Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Goldsborough, Andrew M.; Rautu, S. Alex; Römer, Rudolf A. (2014)
Publisher: IOP Publishing Ltd.
Languages: English
Types: Preprint
Subjects: Q1, QA, QC, Mathematical Physics

Classified by OpenAIRE into

arxiv: Quantitative Biology::Tissues and Organs
We study the leaf-to-leaf distances on full and complete m-ary graphs\ud using a recursive approach. In our formulation, leaves are ordered along a line. We find explicit analytical formulae for the sum of all paths for arbitrary leaf-to-leaf distance r as well as the average path lengths and the moments thereof. We show that the resulting explicit expressions can be recast in terms of Hurwitz-Lerch transcendants. Results for periodic trees are also given. For incomplete random binary trees, we provide first results by numerical techniques; we find a rapid drop of leaf-to-leaf distances for large r.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [2] H. Wiener, J. Am. Chem. Soc. 69, 17 (1947).
    • [3] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, CO, 1995).
    • [4] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. (McGraw Hill, New York, NY, 2012).
    • [5] K. Leckey, R. Neininger, and W. Szpankowski, Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA) (SIAM, Philadelphia, 2013).
    • [6] L. A. Szekely, H. Wang, and T. Wu, Discrete Math. 311, 1197 (2011).
    • [7] H. Wang, ICA Bulletin 60, 62 (2010).
    • [8] P. Jacquet and M. Regnier, Normal Limiting Distribution for the Size and the External Path Length of Tries, Tech. Rep. RR-0827 (INRIA, 1988).
    • [9] P. Kirschenhofer, H. Prodinger, and W. Szpankowski, Theor. Comput. Sci. 68, 1 (1989).
    • [10] P. Kirschenhofer, H. Prodinger, and W. Szpankowski, SIAM J. Comput. 23, 598 (1994).
    • [11] U. Schollwo¨ck, Ann. Phys. 326, 96 (2011).
    • [12] A. M. Goldsborough and R. A. Ro¨mer, Phys. Rev. B 89, 214203 (2014).
    • [13] G. Evenbly and G. Vidal, J. Stat. Phys. 145, 891 (2011).
    • [14] P. Silvi, V. Giovannetti, S. Montangero, M. Rizzi, J. I. Cirac, and R. Fazio, Phys. Rev. A 81, 062335 (2010).
    • [15] M. Gerster, P. Silvi, M. Rizzi, R. Fazio, T. Calarco, and S. Montangero, Phys. Rev. B 90, 125154 (2014).
    • [16] This is the information needed by the holography methods used in Ref. [12].
    • [17] S. Kanemitsu, M. Katsurada, and M. Yoshimoto, Aequationes Math. 59, 1 (2000).
    • [18] H. Srivastava, in Essays in Mathematics and its Applications, edited by P. M. Pardalos and T. M. Rassias (Springer, Berlin/Heidelberg, 2012), p. 431.
    • [19] J. Guillera and J. Sondow, Ramanujan J. 16, 247 (2008).
    • [20] Wolfram Research Inc., Mathematica Version 9.0 (Champaign, IL, 2012).
    • [21] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006).
    • [22] L. Tagliacozzo, G. Evenbly, and G. Vidal, Phys. Rev. B 80, 235127 (2009).
    • [23] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006).
    • [24] M. M. Wolf, G. Ortiz, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 97, 110403 (2006).
    • [25] G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108 (2009).
    • [26] We emphasize that this definition of random trees is different from the definition of so-called Catalan tree graphs [1], as the number of unique graphs is given by the Catalan number Cn and does not double count the degenerate graphs as shown in the center of the n = 3 case of Fig. 6(b).
    • [27] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, London, 1994).
    • [1] Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms. AddisonWesley, Westford, MA, second edition, 2013.
    • [2] Harry Wiener. Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1):17-20, 1947.
    • [3] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. Westview Press, Boulder, CO, 1995.
    • [4] Kenneth H. Rosen. Discrete Mathematics and its Applications. McGraw Hill, New York, NY, seventh edition, 2012.
    • [5] Kevin Leckey, Ralph Neininger, and Wojciech Szpankowski. Towards more realistic probabilistic models for data structures: The external path length in tries under the Markov model. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2013.
    • [6] L. A. Szekely, Hua Wang, and Taoyang Wu. The sum of the distances between the leaves of a tree and then 'semi-regular' property. Discrete Mathematics, 311:1197-1203, 2011.
    • [7] Hua Wang. Sum of distances between vertices/leaves in k-ary trees. ICA bulletin.
    • [8] Philippe Jacquet and Mireille Regnier. Normal limiting distribution for the size and the external path length of tries. Technical Report RR-0827, INRIA, April 1988.
    • [9] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski. On the balance property of Patricia tries: External path length viewpoint. Theoretical Computer Science, 68(1):1 - 17, 1989.
    • [10] P. Kirschenhofer, H. Prodinger, and W. Szpankowski. Digital search trees again revisited: The internal path length perspective. SIAM Journal on Computing, 23(3):598-616, 1994.
    • [11] Ulrich Schollw¨ock. The density-matrix renormalization group in the age of matrix product states. Ann. Phys., 326(1):96-192, 2011.
    • [12] Andrew M. Goldsborough and Rudolf A. Ro¨mer. Self-assembling tensor networks and holography in disordered spin chains. Phys. Rev. B, 2014. accepted for publication, arXiv:1401.4874.
    • [13] G. Evenbly and G. Vidal. Tensor Network States and Geometry. J. Stat. Phys., 145(4):891-918, 2011.
    • [14] S. Kanemitsu, M. Katsurada, and M. Yoshimoto. On the Hurwitz-Lerch zeta-function. aequationes mathematicae, 59(1-2):1-19, 2000.
    • [15] H.M. Srivastava. Riemann, Hurwitz and Hurwitz-Lerch Zeta functions and associated series and integrals. In Panos M. Pardalos and Themistocles M. Rassias, editors, Essays in Mathematics and its Applications, pages 431-461. Springer Berlin Heidelberg, 2012.
    • [16] Jesu´s Guillera and Jonathan Sondow. Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent. The Ramanujan Journal, 16(3):247-270, 2008.
    • [17] Wolfram Research Inc. Mathematica Version 9.0. Champaign, IL, 2012.
    • [18] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, London, 1994.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article