LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Alexander, Sarah
Languages: English
Types: Doctoral thesis
Subjects:
This thesis presents a techno-economic investigation of the generation of electricity from marine macroalgae (seaweed) in the UK (Part 1), and the production of anhydrous ammonia from synthesis gas (syngas) generated from biomass gasification (Part 2). In Part 1, the study covers the costs from macroalgae production to the generation of electricity via a CHP system. Seven scenarios, which varied the scale and production technique, were investigated to determine the most suitable scale of operation for the UK. Anaerobic digestion was established as the most suitable technology for macroalgae conversion to CHP, based on a number of criteria. All performance and cost data have been taken from published literature. None of the scenarios assessed would be economically viable under present conditions, although the use of large-scale electricity generation has more potential than small-scale localised production. Part 2 covers the costs from the delivery of the wood chip feedstock to the production of ammonia. Four cases, which varied the gasification process used and the scale of production, were investigated to determine the most suitable scale of operation for the UK. Two gasification processes were considered, these were O2-enriched air entrained flow gasification and Fast Internal Circulating Fluidised Bed. All performance and cost data have been taken from published literature, unless otherwise stated. Large-scale (1,200 tpd) ammonia production using O2-enriched air entrained flow gasification was determined as the most suitable system, producing the lowest ammonia-selling price, which was competitive to fossil fuels. Large-scale (1,200 tpd) combined natural gas/biomass syngas ammonia production also generated ammonia at a price competitive to fossil fuels.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Marine Biomass plus activity ...................................................................... 30
    • Inshore cultivation ............................................................................... 98 7.2.1.1.1 Inshore cultivation .......................................................................... 121 7.2.1.1.2 Offshore cultivation ........................................................................ 122
    • Anaerobic digestion and CHP plant.......................................................... 124
    • Land......................................................................................................... 124
    • Indirect costs............................................................................................ 124 Operating costs............................................................................................... 125 Anaerobic digestion and biogas usage.............................................. 129 Workforce summary and costs.......................................................... 129 Maintenance ............................................................................................ 130 Water leasing and harvesting permits ...................................................... 130
    • Inshore.............................................................................................. 130
    • Macroalgae scenarios .............................................................................. 158
    • Lowest cost of electricity generation......................................................... 159
    • Financial viability...................................................................................... 160
    • Additional revenue ................................................................................... 161
    • Sensitivities of the electricity selling price................................................. 162
    • Distribution of costs.................................................................................. 162
    • Impact of scale......................................................................................... 162
    • Process selection and modelling .............................................................. 162 Barriers and limitations.................................................................................... 163
    • Yield performance.................................................................................... 163
    • Variation in feedstock composition ........................................................... 163
    • Feedstock solid to water ratio................................................................... 164
    • Assumptions regarding macroalgae collection ......................................... 164
    • Aquaculture synergy ................................................................................ 164
    • Consistency of cost data .......................................................................... 164
    • Consistency of cost data .......................................................................... 165
    • Selection of conversion technology .......................................................... 166
    • Availability of comparable data................................................................. 166 Recommendations for future work................................................................... 166 10.1.1 Production processes............................................................................... 169
    • 10.1.1.1 Natural gas production ...................................................................... 169 10.1.1.1.1 Desulphurisation .......................................................................... 170 10.1.1.1.2 Steam methane reforming (SMR) ................................................ 171 10.1.1.1.3 Water gas shift (WGS) ................................................................. 172 10.1.1.1.6 Ammonia synthesis (Haber Bosch) .............................................. 173
    • 10.1.2 Production costs ...................................................................................... 175
    • 10.1.3 Worldwide production............................................................................... 175
    • 10.1.4 Ammonia production in the UK................................................................. 177 10.2 Biomass gasification ....................................................................................... 177 10.2.4.2 Fluidised bed gasification .................................................................. 182 10.2.4.2.1 Bubbling fluidised bed (BFB)........................................................ 182 10.2.4.2.2 Circulating fluidised bed ............................................................... 183 10.2.4.3 Entrained flow gasification................................................................. 184 10.2.4.4 Twin bed gasification (char indirect gasification) ............................... 184
    • 10.2.6 Operation and economics ........................................................................ 189 10.3 Biomass gasification for ammonia production ................................................. 190 11.1 Comments on individual papers ...................................................................... 193
    • 11.1.1 CEG Padró, V Putsche, 1999................................................................... 193
    • 11.1.2 AEA Technology, 2002............................................................................. 193
    • 11.1.3 PL Spath, DC Dayton, 2003. .................................................................... 194
    • 11.1.4 P Spath, A Aden, T Eggeman, M Ringer, B Wallace, J Jechura, 2005. .... 194
    • 11.1.5 S Phillips, A Aden, J Jechura, D Dayton, T Eggeman, 2007..................... 195
    • 11.1.6 AV Bridgwater, 2009. ............................................................................... 195
    • 11.1.7 RM Swanson, JA Satrio, RC Brown, A Platon, DD Hsu, 2010.................. 195
    • 11.1.8 GH Huisman, GLMA Van Rens, H De Lathouder, RL Cornelissen, 2011. 196
    • 11.1.9 AL Villanueva Perales, C Reyes Valle, P Ollero, A Gómez-Barea. 2011. 196 11.2 Data comparison............................................................................................. 197 12.1 Biomass-based ammonia production .............................................................. 206 12.2 Biomass gasification ....................................................................................... 207 12.2.1 Selected systems..................................................................................... 207
    • 12.2.1.1 Entrained flow gasification................................................................. 207 12.2.1.2 Indirect gasification ........................................................................... 207
    • 12.2.2 Rejected systems..................................................................................... 207 12.3 Scale of production ......................................................................................... 208
    • 12.4.1 Process modelling.................................................................................... 209
    • 12.4.2 Assessment criteria.................................................................................. 209
    • 12.4.3 Target rate of return (TRR)....................................................................... 210 13 Process configurations (ammonia) ......................................................................... 211 13.1 Feedstock handling ......................................................................................... 211
    • 13.1.1 Reception and storage ............................................................................. 212
    • 13.1.2 Drying ...................................................................................................... 212
    • 13.1.3 Size reduction and feeding....................................................................... 213 13.2 Syngas production .......................................................................................... 213 13.2.1 Entrained flow gasification........................................................................ 213
    • 13.2.1.1 Air separation.................................................................................... 214
    • 13.2.2 Indirect gasification .................................................................................. 214 13.3 Gas conditioning and ammonia synthesis ....................................................... 217 13.3.1 Gas conditioning ...................................................................................... 217
    • 13.3.1.1 Methane conversion.......................................................................... 218 13.3.1.2 Heat recovery.................................................................................... 219 14.1 Case 1 (Single EF gasifier to large ammonia plant)......................................... 225 14.1.1 Feedstock handling .................................................................................. 225 14.1.2 Syngas production ................................................................................... 226
    • 14.1.2.1 Entrained flow gasification................................................................. 226 14.1.2.2 Air separation.................................................................................... 229 14.1.3 Gas conditioning and ammonia production............................................... 229
    • 14.1.3.1 Water gas shift .................................................................................. 230 14.1.3.2 14.1.3.3 H2S removal...................................................................................... 230 CO2/H2O removal .............................................................................. 230 14.1.3.4 Methanation ...................................................................................... 232 14.1.3.5 Ammonia synthesis........................................................................... 232 14.2.1 Feedstock handling .................................................................................. 234 14.2.2 Syngas production ................................................................................... 235
    • 14.2.2.1 Indirect gasification ........................................................................... 235 14.2.3 Gas conditioning and ammonia synthesis ................................................ 235
    • 14.2.3.1 Stream compression and preheating................................................. 235 14.2.3.2 Partial oxidation (TPO)...................................................................... 236 14.2.3.3 Gas conditioning and ammonia synthesis ......................................... 237
    • 14.2.4 Heat recovery........................................................................................... 237 14.3 Case 4 (Scaled FICFB and Natural gas to large ammonia plant) .................... 238 14.3.1 Feedstock handling .................................................................................. 238 14.3.2 Syngas production and preparation.......................................................... 238 14.3.3 Gas conditioning and ammonia synthesis ................................................ 239 14.3.3.3 Pre-heating systems ......................................................................... 239 14.5 Mass, energy and power balances.................................................................. 242 14.6 Comparison of ammonia production cases...................................................... 248 15.1 Project assumptions........................................................................................ 250
    • 15.2.1 Feed preparation...................................................................................... 251
    • 15.2.2 Syngas production ................................................................................... 251
    • 15.2.3 Gas conditioning and ammonia synthesis ................................................ 251
    • 15.2.4 Indirect ..................................................................................................... 252
    • 15.2.5 Land......................................................................................................... 252 15.3 Operating costs............................................................................................... 252
    • 15.3.1 Feedstock and logistics............................................................................ 252
    • 15.3.2 Labour...................................................................................................... 254
    • 15.3.3 Materials and utilities................................................................................ 254
    • 15.3.4 Maintenance ............................................................................................ 255
    • 16.6.4.1 MDEA scrubbing ............................................................................... 276 16.6.4.2 Physical adsorption ........................................................................... 276 16.7 Project barriers and limitations ........................................................................ 277 16.7.1 Variation in feedstock composition ........................................................... 277 16.7.2 Availability of feedstock ............................................................................ 277 16.7.3 1.7.3 Syngas composition ........................................................................ 277 16.7.4 Status of technology................................................................................. 277 16.7.5 Availability of technology .......................................................................... 278
    • 17.2.1 Lowest ammonia price ............................................................................. 280
    • 17.2.2 Financial viability...................................................................................... 282
    • 17.2.3 Impact of scale......................................................................................... 283
    • 17.2.4 Distribution of costs.................................................................................. 283
    • 17.2.5 Process modelling.................................................................................... 283 17.3 Barriers and limitations.................................................................................... 283
    • 17.3.1 Variation in feedstock composition ........................................................... 284
    • 17.3.2 Availability of feedstock............................................................................ 284
    • 17.3.3 Use of modelling ...................................................................................... 284
    • 17.3.4 Status of technology................................................................................. 284
    • 17.3.5 Availability of technology.......................................................................... 284
    • 17.3.6 Combining data from multiple sources ..................................................... 284 17.4 Recommendations for future work................................................................... 285
    • 17.4.1 Pilot trials ................................................................................................. 285
    • 17.4.2 Torrefaction trials ..................................................................................... 285
    • 17.4.3 Biomass/natural gas variation trials.......................................................... 285
    • 17.4.4 By-product revenue.................................................................................. 285
    • 17.4.5 Alternative technology.............................................................................. 285 18 References............................................................................................................. 286 Appendix A: ASPEN Plus® unit modelling parameters................................................... 316 218. Sanchez-Machado, D. I., J. Lopez-Cervantes, et al. (2004). "Fatty acids, total lipid,
    • protein and ash contents of processed edible seaweeds." Food Chemistry85: 439-
    • 444. 219. Moen, E., S. Horn, et al. (1997a). "Alginate degradation during anaerobic digestion
    • of Laminaria hyperborea stipes." Journal of Applied Phycology9: 157-166. 220. Swanson, R. M., J. A. Satrio, et al. (2010). Techno-Economic Analysis of Biofuels
    • Production Based on Gasification, NREL. 221. Coastal Care. (2012). "Wild boar deaths linked to green algae: confirmed." from
    • http://coastalcare.org/2011/08/wild-boar-deaths-linked-to-green-algae-confirmed/ 222. Lichfield, J. (2011). "Fears rise over French 'killer seaweed' that left 15 wild boar
    • dead." The Independent Retrieved 17/9/2012, from
    • seaweed-that-left-15-wild-boar-dead-2326492.html 223. Stanley, M. (2009). Fuels from seaweed, BioMara. 224. Migliore, G., C. Alisi, et al. (2012). "Anaerobic digestion of macroalgal biomass and
    • sediments sourced from the Orbetello lagoon, Italy." Biomass & Bioenergy42: 69-77. 225. Kübler, H. and C. Schertler (1994). "Three-phase anaerobic digestion of organic
    • wastes." Water Science and Technology30 (12): 367-374. 226. Biogas Products Ltd. (2012). Retrieved 2011/2012, from
    • http://biogasproducts.co.uk/ 227. Bridgwater, A. V. (1994). "Catalysis in thermal biomass conversion." Applied
    • Catalysis A: General 116: 5-47. Cited by Belgiorno et al. [141]. 228. Chennubhotla, V. S. (1988). a) Status of seaweed culture in India. b) Manual on
    • Gracilaria, FAO. 6: 2-46. Cited by Aresta et al. [5]. 229. Sawayama, S., S. Inoue, et al. (1995). "CO2 fixation and oil production through
    • microalga." Energy Conversion and Management 36: 729-731. Cited by Aresta et al.
    • [5]. 230. Lenzi, M. ICRAM. Rome, Italy. Cited by Aresta et al. [5]. 231. Smyth, B. M., J. D. Murphy, et al. (2009). "What is the energy balance of grass
    • and Sustainable Energy Reviews13: 2349-2360. 232. Mehta, A. (2002). The Economics and Feasibility of Electricity Generation using
    • Economics - University of Wisconsin. 233. Herringshaw, B. (2009). A Study of Biogas Utilization Efficiency Highlighting
    • Engineering. 234. Sanderson, J. C. (2006). Reducing the environmental impact of seacage fish
    • (SAMS). PhD: 356. 235. Buck, B. H., M. W. Ebeling, et al. (2010). "Mussel cultivation as a co-use in
    • Management14(4): 255-281. 236. Juniper Consultancy Services Ltd. (2007). Anaerobic digestion technology for
    • biomass projects, Renewables East. 237. Perales, A. L., C. R. Valle, et al. (2011). "Technoeconomic assessment of ethanol
    • Energy36(7): 4097-4108. 238. Coyle, M. (2007). Effects of payload on the fuel consumption of trucks, Imise
    • Limited. 239. AA (2011). Fuel Price Report: Petrol and diesel price archive 2000-2010. 240. Hamelinck, C. N., R. A. Suurs, et al. (2003). International bioenergy transport costs
    • Society. 241. Hamelinck, C. N., R. A. Suurs, et al. (2005). "International bioenergy transport
    • costs and energy balance." Biomass & Bioenergy29: 114-134. 242. Sinnott, R. K. (2005). Coulson and Richardson's Chemical Engineering Volume 6 -
    • Chemical Engineering Design, Elsevier. 243. Kaiser, M. J., Y. Yu, et al. (2010). "Economic feasibility of using offshore oil and
    • gas structures in the Gulf of Mexico for platform-based aquaculture." Marine Policy34:
    • 699-707. 244. Eurostat (2009). Agricultural Statistics. 2007-2008, Eurostat, Luxembourg: 131. 245. Lum, C. (2002). Moi farm signs 20-year lease. Honolulu Advertiser: 1-2. Cited by
    • Kam [216]. 246. Hillmann, L. G. (2005). Summary of regulations for seaweed harvesting along the
    • west coast of North America, Oregon Parks and Recreation Department. 247. DECC (2011a). "Table 3.1.3 Prices of fuels purchased by manufacturing industry."
    • Retrieved 1/4/2011, from
    • www.decc.gov.uk/assets/decc/statistics/source/prices/qep313.xls 295. Wu, C. Z., B. Y. Xu, et al. (1995). "Analysis of biomass gasification for MHV fuel
    • gas." Gas Heat (in Chinese)2: 8-14. Cited by Lv et al. [290]. 296. Paisley, M. A. and R. P. Overend (2002). Verification of the performance of future
    • Vermont gasifier. Pittsburgh coal conference Pittsburgh, PA University of Pittsburgh. 297. Dietenberger, M. and M. Anderson (2007). "Vision of the U.S. Biofuel Future: A
    • Chemistry Research46: 8863-8874. 298. Boerrigter, H. and R. Rauch (2005). Review of applications of gases from biomass
    • (BTG). 299. Kindig, J. K., R. R. Odle, et al. (2007). Method for the treatment of coal. U. S. P.
    • Office. USA, AlChemix Corporation. US 7,232,472 B2. 300. Tortosa Masia, A., B. Buhre, et al. (2007). "Characterising ash of biomass and
    • waste." Fuel Processing Technology 88 (11-12): 1071-1081. Cited by Wang et al.
    • [25]. 301. Milne, T. A., R. J. Evans, et al. (1998). Biomass Gasification 'Tars': Their nature,
    • Formation and Conversion. Cited by Higman & van der Burgt [176]. 302. García, L., R. French, et al. (2000). "Catalytic steam reforming of bio-oils for the
    • 201: 225-239. 303. Pröll, T., R. Rauch, et al. (2007). "Fluidized Bed Steam Gasification of Solid
    • Biomass - Performance Characteristics of an 8 MWth Combined Heat and Power
    • Plant." International Journal of Chemical Reactor Engineering5: 1-19. 304. Quaak, P., H. Knoef, et al. (1999). Energy from biomass. World Bank technical
    • paper no. 422. 305. Juniper Consultancy Services Ltd. (2000). Pyrolysis & Gasification of Waste.
    • Worldwide Technology & Business Review. Cited by Belgiorno et al. [141]. 306. Asadullah, M., S.-I. Ito, et al. (2002). "Biomass Gasification to Hydrogen and
    • Journal of Catalysis208: 255-259. 307. CITEC (2000). Le linee guida per la progettazione, la realizzazione e la gestione
    • pollution 18 Salone internazionale servizi pubblici e antinquinamento. Cited by
    • Belgiorno et al. [141]. 323. Depner, H. and A. Jess (1999). "Kinetics of nickel-catalyzed purification of tarry
    • fuel gases from gasification and pyrolysis of solid fuel." Fuel78: 1369-1377. Cited by
    • Belgiorno et al. [141] 324. Bentzen, J. D. (2000). Optimized two-stage gasifier. Proceedings of first world
    • conference on biomass for energy and industry. Cited by Han & Kim [285]. 325. Colomba, D. B. (2002). "Modeling intra- and extra-particle processes of wood fast
    • pyrolysis." AIChE Journal48: 2386-97. Cited by Han & Kim [285]. 326. Corella, J., J. Herguido, et al. (1988). Pyrolysis and steam gasification of biomass
    • [142]. 327. Andre, R. N., F. Pinto, et al. (2005). "Fluidised bed co-gasification of coal and olive
    • oil industry wastes." Fuel84: 1635-44. Cited by Han & Kim [285]. 328. Rapagna (1998). Cited by Han & Kim [285]. 329. Gil, J. and M. A. Caballero (1999). "Biomass gasification with air in fluidized bed:
    • Engineering Chemistry Research138: 4226-4235. Cited by Han & Kim [285]. 330. Zhang, X. (2003). The mechanism of tar cracking by catalyst and the gasification
    • of biomass, Zhejiang University (China). Dissertation. Cited by Han & Kim [285]. 331. Bridgwater, A. V. and G. D. Evans (1993). An Assessment of Thermochemical
    • Industry. Cited by Bridgwater [142]. 332. Ståhl, K., L. Waldheim, et al. (2008). CHRISGAS Project - Clean Hydrogen-rich
    • Termiska Processer AB, VVBGC - Växjö Värnamo Gasification Centre AB. 333. de Graaf, J. D. (2008). Shell Coal Gasification Technology. Energy from Biomass. 334. Bolhàr-Nordenkampf , M. and H. Hofbauer (2004). Gasification Demonstration
    • Plants in Austria IV. International Slovak Biomass Forum, Bratislava. 335. Dietz et al. (1978). Cited by Spath and Dayton [340]. 336. Padró, C. E. G. and V. Putsche (1999). Survey of the Economics of Hydrogen
    • Technologies. Golden, Colorado, USA, NREL. 337. Mann, M. K. (1995a). Technical and economic assessment of producing hydrogen
    • Renewable Energy Lab. Cited by Padró & Putsche [332]. 338. Larson, E. D. and R. E. Katofsky (1992). Production of Methanol and Hydrogen
    • University. 339. AEA Technology (2002). The Feasibility, Costs and Markets for Hydrogen
    • Production. 340. Spath, P. L. and D. Dayton (2003). Preliminary Screening - Technical and
    • the Potential for Biomass-Derived Syngas. Golden, Colorado, USA, NREL. 341. Peters, M. S. and K. D. Timmerhaus (2003). Plant Design and Economics for
    • Chemical Engineers. New York, McGraw-Hill, Inc. 342. Aden, A., M. Ruth, et al. (2002). Lignocellulosic Biomass to Ethanol Process
    • Hydrolysis for Corn Stover, NREL. 343. Bridgwater, A. V. (2009). Technical and Economic Assessment of Thermal
    • Northwest Biomass to Liquids Project, NNFCC. 344. The German Energy Agency (DENA) (2006). Biomass to Liquid - BtL
    • (DENA). Cited by Bridgwater [343]. 345. Reed, M. E., L. van Bibber, et al. (2007). Baseline Technical and Economic
    • National Energy Technology Laboratory. 346. Hamelinck, C. N. and A. Faaij (2001). Future Prospects for Production of Methanol
    • and Hydrogen from Biomass. Utrecht, the Netherlands, Utrecht University. 347. Scandinavian Energy Projects AB. Personal communication with Olle Wennberg,
    • Process engineer at Scandinavian Energy Projects; 2009. Cited by Huisman et al.
    • [16]. 348. Rogers, J. G. (2009). A techno-economic assessment of the use of fast pyrolysis
    • PhD: 376. 349. Garret, D. (1988). Chemical Engineering Economics, Van Nostrand Reinhold 350. U. S. Bureau of Labour Statistics. Fromhttp://www.bls.gov/. Cited by Phillips et al.
    • [15] and Swanson et al. [220]. 351. Veab (2009) Personal communication with A.C. Tranvik, Head of Chemistry. Växjö
    • Energi AB. Cited by Huisman et al. [16]. 352. Pröll, T. (2010). Gussing Data. S. Alexander. 366. Meier, I. and V. Tarhan (2006). Corporate investment decision practices and the
    • hurdle rate premium puzzle, Mimeo. 367. Tucker, J. (2009). How to set the hurdle rate for capital investments. Qfinance: The
    • Ultimate Resource. D. Stauffer, A & C Black: 322-324. 368. E4Tech (2009). Review of Technologies for Gasification of Biomass and Wastes. 369. Royal Commission on Environmental Pollution (2004). Biomass as a Renewable
    • Energy Source, Crown Copyright. Cited by Rogers [348]. 370. Paul Arwas Associates (2005). Biomass sector review for the Carbon Trust. Cited
    • by Rogers [348]. 371. Fischer, G., S. Prieler, et al. (2010). "Biofuel production potentials in Europe:
    • & Bioenergy34(2): 173-187. Cited by Gilbert et al. [372]. 372. Gilbert, P., S. Alexander, et al., (2011). Decarbonising the fertiliser industry using
    • biomass gasification. Unpublished paper. 373. Gigler, J. K., G. Meerdink, et al. (1999). "Willow supply strategies to energy
    • plants." Biomass and Bioenergy17(3): 185-198. Cited by Gilbert et al. [372]. 374. Amos, W. A. (1998). Report on Biomass Drying Technology. Golden, Colorado,
    • USA, NREL. 375. Hulkkonen, S., O. Heinonen, et al. (1994). "Drying wood biomass at high pressure
    • steam atmosphere experimental; Research and application." Drying Technology12(4):
    • 869-887. Cited by Amos [374]. 376. Hulkkonen, S., M. Raiko, et al. (1991). "High efficiency power plant processes for
    • moist fuels." IGTI6. Cited by Amos [374]. 377. van Swaaij, W., F. van den Aarsen, et al. (1994). A Review of Biomass
    • Gasification. A Report to the European Community DGXII JOULE Programme. 378. Henrich, E. and F. Weirich (2002). Pressurised Entrained Flow Gasifiers for
    • Biomass. IT3´02 Conference. New Orleans, Louisiana. 379. Eurlings, J. and J. Ploeg (1999). Process Performance of the SCGP at Buggenum
    • IGCC. Gasification Technologies Conference. San Francisco, California. 380. Smith, A. R. and J. Klosek (2001). "A review of air separation technologies and
    • their integration with energy conversion processes." Fuel Processing Technology70:
    • 115-134. 381. Hofbauer, H. (1982). "Untersuchungen an einer zirkulierenden Wirbelschicht mit
    • Zentralrohr." Chem. Ing.-Tech.54(5): 528-529. Cited by Fercher et al. [314]. 382. Rauch, R., H. Hofbauer, et al. (2004). Steam Gasification at CHP Plant Güssing -
    • Status of the Demonstration Plant. 2nd World Conference and Technology Exhibition
    • on Biomass for Energy, Industry and Climate Protection. Rome, Italy. 1103.8 455.1 657.4
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article