Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McGregor, J.; Li, R.; Zeitler, J.A.; D Agostino, C.; Collins, J.H.P.; Mantle, M.; Manyar, H.; Holbrey, J.D.; Falkowska, M.; Youngs, T.G.A.; Hardacre, C.; Stitt, E.H.; Gladden, L.F. (2015)
Publisher: The Royal Society of Chemistry
Languages: English
Types: Article
Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time domain spectroscopy (THz TDS) and NMR relaxation time analysis has been applied to investigate 2 propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at 90 mol % H2O. Furthermore, this is the same value at which well established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz TDS have been used to provide estimates of the size of the hydration shell around 2 propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2 propanol are found in the 2 propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2 propanol/water across the composition range is presented.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S. H. Chen, H. E. Stanley and F. Mallamace, J. Phys. Chem. B, 2008, 112, 10449-10454.
    • 2 D. R. Palo, R. A. Dagle and J. D. Holladay, Chem. Rev., 2007, 107, 3992-4021.
    • 3 P. Kumar, Z. Yan, L. Xu, M. G. Mazza, S. V. Buldyrev, S. H. Chen, S. Sastry and H. E. Stanley, Phys. Rev. Lett., 2006, 97, 177802.
    • 4 S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone and E. Mamontov, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 9012-9016.
    • 5 B. S. Akpa, C. D'Agostino, L. F. Gladden, K. Hindle, J. McGregor, H. Manyar, R. Li, M. Neurock, D. W. Rooney, N. Sinha, E. H. Stitt, D. Weber and J. A. Zeitler, J. Catal., 2012, 289, 30-41.
    • 6 J. R. Battler, W. M. Clark and R. L. Rowley, J. Chem. Eng. Data, 1985, 30, 254-259.
    • 7 K. Soliman and E. Marschall, J. Chem. Eng. Data, 2002, 35, 375-381.
    • 8 M. Akramova, O. Shokirow and T. Nurtidinov, Dokl. Akad. Nauk Tadzh. SSR, 1976, 19, 27-30.
    • 9 Z. J. Derlacki, A. J. Easteal, A. V. J. Edge, L. A. Woolf and Z. Roksandic, J. Phys. Chem., 1985, 89, 5318-5322.
    • 10 N. Micali, S. Trusso, C. Vasi, D. Blaudez and F. Mallamace, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1996, 54, 1720-1724.
    • 11 D. S. Venables and C. A. Schmuttenmaer, J. Chem. Phys., 2000, 113, 11222-11236.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article