LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Evans, C.A.; Jovanović, V.D.; Indjin, D.; Ikonić, Z.; Harrison, P. (2006)
Publisher: The Institution of Engineering and Technology
Languages: English
Types: Article
Subjects:
A quantum-cascade laser (QCL) thermal model is presented. On the basis of a finite-difference approach, the model is used in conjunction with a self-consistent carrier transport model to calculate the temperature distribution in a near-infrared InGaAs/AlAsSb QCL. The presented model is used to investigate the effects of driving conditions and device geometries on the active-region temperature, which has a major influence on the device performance. A buried heterostructure combined with epilayer-down mounting is found to offer the best performance compared with alternative structures and has thermal time constants up to eight times smaller. The presented model provides a valuable tool for understanding the thermal dynamics inside a QCL and will help to improve operating temperatures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oestrele, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science, vol. 295, p. 301-305, 2002.
    • [2] A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuouswave mode above 90 0C at λ ∼ 5.25μm,” Appl. Phys. Lett., vol. 88, no. 051105, 2006.
    • [3] J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuouswave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8μm,” Appl. Phys. Lett., vol. 87, no. 041104, 2005.
    • [4] A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett., vol. 84, no. 3, p. 314-316, 2004.
    • [5] J. S. Yu, S. R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi, “Room-temperature continuous-wave operation of quantum-cascade lasers at λ ∼ 4μm,” Appl. Phys. Lett., vol. 88, no. 041111, 2006.
    • [6] A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuouswave operation of λ ∼ 4.8μm quantum-cascade lasers at room temperature,” Appl. Phys. Lett., vol. 85, no. 12, p. 2166-2168, 2004.
    • [7] D. G. Revin, L. R. Wilson, E. A. Zibnik, R. P. Green, and J. W.Cockburn, “InGaAs/AlAsSb quantum cascade lasers,” Appl. Phys. Lett., vol. 85, no. 18, p. 3992-3994, 2004.
    • [8] Q. Yang, C. Manz, W. Bronner, C. Mann, L. Kirste, K. Ko¨hler, and J. Wagner, “GaInAs/AlAsSb quantum-cascade lasers operating up to 400 K,” Appl. Phys. Lett., vol. 86, no. 131107, 2005.
    • [9] Q. Yang, C. Manz, W. Bronner, L. Kirste, K. Ko¨hler, and J. Wagner, “GaInAs/AlGaAsSb quantum-cascade lasers,” Appl. Phys. Lett., vol. 86, no. 131109, 2005.
    • [10] Q. Yang, C. Manz, W. Bronner, R. Moritz, C. Mann, G. Kaufel, K. Ko¨hler, and J. Wagner, “Continuous-wave operation of GaInAs/AlGaAsSb quantum-cascade lasers,” IEEE Photon. Technol. Lett., vol. 17, no. 11, p. 2283-2285, 2005.
    • [11] D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonic´, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett., vol. 82, no. 9, p. 1347-1349, 2003.
    • [12] V. D. Jovanovic´, D. Indjin, N. Vukmirovic´, Z. Ikonic´, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum cascade lasers: Influence of injector doping,” Appl. Phys. Lett., vol. 86, no. 211117, 2005.
    • [13] C. A. Evans, V. D. Jovanovic´, D. Indjin, Z. Ikonic´, and P. Harrison, “Design and simulation of InGaAs/AlAsSb quantumcascade lasers for short wavelength emission,” Appl. Phys. Lett., vol. 87, no. 141109, 2005.
    • [14] D. G. Revin, M. J. Steer, L. R. Wilson, R. J. Airey, J. W. Cockburn, E. A. Zibnik, and R. P. Green, “InGaAs-AlAsSb quantum cascade structures emitting at 3.1 μm,” Electron. Lett., vol. 40, no. 14, p. 874-875, 2004.
    • [15] P. Harrison, Quantum Wells, Wires, and Dots: Theoretical and Computational Physics, 2nd Edition. Wiley, Chichester, 2005.
    • [16] E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of Guided and Leaky Modes in Lossless and Lossy Planar Multilayer Optical Waveguides: Reflection Pole Method and Wavevector Density Method,” J. Lightwave Technol., vol. 17, no. 5, pp. 929-941, May 1999.
    • [17] M. Sotoodeh, A. Khalid, and A. Rezazadeh, “Empirical lowfield mobility model for III-V compounds applicable in device simulation codes,” J. Appl. Phys., vol. 87, no. 6, p. 2890-2900, March 2000.
    • [18] W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-andprobe technique,” Phys. Rev. B, vol. 59, pp. 8105-8113, 1999.
    • [19] G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B, vol. 57, pp. 14 958-14 973, 1998.
    • [20] C. Pfl u¨gl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Inferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett., vol. 82, no. 11, p. 1664-1666, 2003.
    • [21] Y. G. Zhang, Y. J. He,A. I. Li, “Transient thermal analysis of InAlAs/InGaAs/InP mid-infrared quantum cascade lasers” Chin. Phys. Lett., vol. 20, no. 5, p. 678-681, 2002.
    • [22] S. T. Huxtable, Ph.D. Thesis, University of California, Berkeley (2002).
    • [23] C. Gmachl, A. M. Sergent, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Improved cw operation of quantum cascade lasers with epitaxial-side heat-sinking” IEEE Photon. Technol. Lett., vol. 11, no. 11, p.1369-1371, 1999.
    • [24] J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Short wavelength (λ ∼ 4.3μm) high-performance continuouswave quantum-cascade lasers,” IEEE Photon. Technol. Lett., vol. 17, no. 6, p.1154-1156, 2005.
    • [25] S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett., vol. 16, no. 3, p. 744-746, 2004.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article