LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Smith, Katie A. (2016)
Languages: English
Types: Unknown
Subjects:
As projections of future climate raise concerns over water availability and extreme hydrological events, global hydrology models are increasingly being employed to better understand our global water resources and how they may be affected by climate change. Being a relatively recent development in hydrological science, global hydrology modelling has not yet undergone the same level of assessment and evaluation as catchment scale hydrology modelling. Until now, global hydrology models have presented just one deterministic model output for use in scientific research. Recently, multi-model ensembles have compared these outputs for different global models, but this has been done prematurely as the uncertainties within individual models have yet to be understood.\ud \ud This study demonstrates a rigorous uncertainty investigation of the 123 parameters within the Mac-PDM global hydrology model over 21 global river catchments. Mac-PDM was selected for its relative simplicity amongst global hydrology models, and its suitability for application using high performance computer clusters. A new version of the model, Mac-PDM.14 is provided, with updated soil and vegetation classifications. This model is then subjected to a 100,000 parameter realisation Generalised Likelihood Uncertainty Estimation (GLUE) experiment, requiring 40 days of high performance computing time, and outputting over 2Tb of data. The top performing model parameterisation from this experiment provides an annual average error of 47% when compared to observed records, a 45% improvement over the previous version of the model, Mac-PDM.09. Given the computational expense of such an experiment, smaller sample sizes of parameter realisations are explored. Whilst the top performing parameterisation in a sample size as small as 1,000 can perform almost as well as that from 100,000 parameterisations, the number of good parameterisations is fewer, and the range of model uncertainty may therefore be significantly underestimated.\ud \ud Mac-PDM.14 is shown to have a lower mean absolute relative error than all models involved in both the Water and Global Change (WATCH) project and the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP). Parameter uncertainty is compared to model uncertainty, and the uncertainty range between the models within the WATCH and ISI-MIP projects is comparable to the parameter uncertainty within Mac-PDM.14. Catchment specific calibrations of the global hydrology model are explored, and it is demonstrated that the model performance is improved by 22 to 92%, for the Niger and the Yangtze respectively, with catchment specific parameter values over a global calibration. Approximate Bayesian Rejection is applied to explore the catchment specific parameter values that result in good parameter performance. Few trends can be identified from this analysis, which suggests that Mac-PDM may be over-parameterised. Catchment specific calibrations in both high latitude and arid to semi-arid regions show significant improvement over global calibration, which indicate a deficiency in model structure; the addition of a glacier component to Mac-PDM is recommended. Model calibrations are validated using the ISI-MIP forcing dataset, and the best model performance gives an error of 44%. This is a betterment on the performance with the WATCH forcing data used in calibration, and so implies that models not need to be recalibrated every time new forcing datasets are employed.\ud \ud This research highlights that the performance of global hydrology models can be significantly improved by running a parameter uncertainty assessment, and that in catchment scale studies, catchment specific calibration should be carefully considered. Furthermore, the uncertainty within individual global hydrology models is an important consideration that should not be overlooked as these models are increasingly included in ensembles and interdisciplinary studies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Dumont, E., Williams, R., Keller, V. & Folwell, S. (2010). Modelling Water Scarcity across Europe in Terms of Water Quantity and Quality. In: SERVAT, E., DEMUTH, S., DEZETTER, A. & DANIELL, T. (eds.) Global Change: Facing Risks and Threats to Water Resources. Wallingford: Int Assoc Hydrological Sciences.
    • Dumont, E., Williams, R., Keller, V., Voß, A. & Tattari, S. (2012). Modelling Indicators of Water Security, Water Pollution and Aquatic Biodiversity in Europe. Hydrological Sciences Journal, 57, 1378-1403.
    • Ellis, J. B., Geodesy, I. U. O. & Assembly, G. G. (1999). Impacts of Urban Growth on Surface Water and Groundwater Quality: Proceedings of an International Symposium Held During Iugg 99, the Xxii General Assembly of the International Union of Geodesy and Geophysics, at Birmingham, Uk 18-30 July 1999, IAHS.
    • Engelhardt, I., De Aguinaga, J., Mikat, H., Schüth, C., Lenz, O. & Liedl, R. (2012). Complexity Versus Simplicity: An Example of Groundwater Model Ranking with the Akaike Information Criterion. Hydrology and Earth System Sciences Discussions, 9, 9687-9714.
    • Essery, R., Best, M., Betts, R., Cox, P. M. & Taylor, C. M. (2003). Explicit Representation of Subgrid Heterogeneity in a Gcm Land Surface Scheme. Journal of Hydrometeorology, 4.
    • Fair, G. M. & Hatch, L. P. (1933). Fundamental Factors Governing the Streamline Flow of Water through Sand Journal (American Water Works Association), 25, 1551-1565.
    • Fao. (1995). Digital Soil Map of the World [Online]. Available: http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116 [Accessed 18/03/2013.
    • Fao (2014a). Aquastat Database.
    • Fao. (2014b). Soil Texture Web Page [Online]. Available: ftp://ftp.fao.org/fi/CDrom/FAO_training/FAO_training/general/x67 06e/x6706e06.htm [Accessed 26/05/2014.
    • Federer, C. A., Vörösmarty, C. & Fekete, B. (2003). Sensitivity of Annual Evaporation to Soil and Root Properties in Two Models of Contrasting Complexity. Journal of Hydrometeorology, 4, 1276- 1290.
    • Fekete, B. & Vorosmarty, C. J. (2011). Islscp Ii Unh/Grdc Composite Daily Runoff. In: HALL, F. G., COLLATZ, G. J., MEESON, D., LOS, S., BROWN DE COLSTOUN, E. & LANDIS, D. (eds.) ISLSCP Initiative II Collection.
    • Fekete, B. M., Vörösmarty, C. J. & Grabs, W. (1999). Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances. Fed. Inst. of Hydrology.
    • Fekete, B. M., Vörösmarty, C. J., Roads, J. O. & Willmott, C. J. (2004). Uncertainties in Precipitation and Their Impacts on Runoff Estimates. Journal of Climate, 17, 294-304.
    • Fernando, D. & Jayawardena, A. (1998). Runoff Forecasting Using Rbf Networks with Ols Algorithm. Journal of Hydrologic Engineering, 3, 203-209.
    • Folwell, S. & Farquharson, F. (2006). The Impacts of Climate Change on Water Resources in the Okavango Basin. Climate Variability and Change - Hydrological Impacts (Proceedings of the Fifth Friend World Conference Held at Havana, Cuba, November 2006). IAHS.
    • Frame, D. J., Aina, T., Christensen, C. M., Faull, N. E., Knight, S. H. E., Piani, C., Rosier, S. M., Yamazaki, K., Yamazaki, Y. & Allen, M. R. (2009). The Climateprediction.Net Bbc Climate Change Experiment: Design of the Coupled Model Ensemble. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 855-870.
    • Freer, J., Beven, K. & Ambroise, B. (1996). Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the Glue Approach. Water Resour. Res., 32, 2161- 2173.
    • Freeze, R. A. & Harlan, R. (1969). Blueprint for a Physically-Based, Digitally-Simulated Hydrologic Response Model. Journal of Hydrology, 9, 237-258.
    • Fung, C. F., Farquharson, F. & Chowdhury, J. (2006). Exploring the Impacts of Climate Change on Water Resources-Regional Impacts at a Regional Scale: Bangladesh. Climate variability and change: hydrological impacts, 389-393.
    • Fung, F., Lopez, A. & New, M. (2011). Water Availability in +2°C and +4°C Worlds. Philosophical Transactions of the Royal Society A., 369, 99-116.
    • Gain, A. K. & Wada, Y. (2014). Assessment of Future Water Scarcity at Different Spatial and Temporal Scales of the Brahmaputra River Basin. Water resources management, 28, 999-1012.
    • Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T., Su, F., Sheffield, J., Pan, M., Lettenmaier, D. P. & Wood, E. F. (2010). Water Budget Record from Variable Infiltration Capacity (Vic) Model. Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records.
    • Gebhart, S., Radoglou, K., Chalivopoulos, G. & Matzarakis, A. (2013). Evaluation of Potential Evapotranspiration in Central Macedonia by Empest. Advances in Meteorology, Climatology and Atmospheric Physics. Springer.
    • Giustolisi, O. & Laucelli, D. (2005). Improving Generalization of Artificial Neural Networks in Rainfall-Runoff Modelling / Amélioration De La Généralisation De Réseaux De Neurones Artificiels Pour La Modélisation Pluie-Débit. Hydrological Sciences Journal, 50, null-457.
    • Gosling, S., Bretherton, D. & Arnell, N. W. (2010). Global Hydrology Modelling and Uncertainty: Running Multiple Ensembles with a Campus Grid. Philosophical Transactions of the Royal Society A., 388, 4005-4021.
    • Gosling, S. N. & Arnell, N. W. (2011). Simulating Current Global River Runoff with a Global Hydrological Model: Model Revisions, Validation and Sensitivity Analysis. Hydrological Processes, 25, 1129-1145.
    • Gosling, S. N., Taylor, R. G., Arnell, N. W. & Todd, M. C. (2011). A Comparative Analysis of Projected Impacts of Climate Change on River Runoff from Global and Catchment-Scale Hydrological Models. Hydrol. Earth Syst. Sci., 15, 279-294.
    • Grant, D. (1975). Comparison of Evaporation from Barley with Penman Estimates. Agricultural Meteorology, 15, 49-60.
    • Grdc (2014). The Global Runoff Data Base. In: THE GLOBAL RUNOFF DATA CENTRE (ed.). http://www.bafg.de/GRDC/EN/Home/homepage_node.html D56002 Koblenz, Germany.
    • Green, A., Thompson, J., Kingston, D. & Gosling, S. (Year) Published. Quantifying the Relative Magnitude of Sources of Uncertainty in River Flow Projections under Climate Change: An Assessment for the Mekong River. EGU General Assembly Conference Abstracts, 2014. 15019.
    • Green, W. H. & Ampt, G. A. (1911). Studies on Soil Physics Part I - the Flow of Air and Water through Soils. Journal of Agricultural Science, 4, 1-24.
    • Gruber, T., Bamber, J. L., Bierkens, M. F. P., Dobslaw, H., Murbock, M., Thomas, M., Van Beek, L. P. H., Van Dam, T., Vermeersen, L. L. A. & Visser, P. N. a. M. (2011). Simulation of the Time-Variable Gravity Field by Means of Coupled Geophysical Models. Earth Systems Science Data Discussion, 4, 27-40.
    • Guimberteau, M., Drapeau, G., Ronchail, J., Sultan, B., Polcher, J., Martinez, J.-M., Prigent, C., Guyot, J.-L., Cochonneau, G. & Espinoza, J. (2012). Discharge Simulation in the Sub-Basins of the Amazon Using Orchidee Forced by New Datasets. Hydrology & Earth System Sciences, 16.
    • Gupta, A. (2007). Large Rivers: Geomorphology and Management, John Wiley.
    • Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1998). Toward Improved Calibration of Hydrologic Models: Multiple and Noncommensurable Measures of Information. Water Resources Research, 34, 751-763.
    • Gupta, S. K. (2010). Modern Hydrology and Sustainable Water Development, John Wiley & Sons.
    • Guse, B., Reusser, D. E. & Fohrer, N. (2014). How to Improve the Representation of Hydrological Processes in Swat for a Lowland Catchment - Temporal Analysis of Parameter Sensitivity and Model Performance. Hydrological Processes, 28, 2651-2670.
    • Haddeland, I., Clarke, D., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling, S., Hagemann, S., Hanasaki, N., Harding, R., Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., Weedon, G. P. & Yeh, P. (2011). Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology, 12, 869-884.
    • Haddeland, I., Lettenmaier, D. P. & Skaugen, T. (2006a). Effects of Irrigation on the Water and Energy Balances of the Colorado and Mekong River Basins. Journal of Hydrology, 324, 210-223.
    • Haddeland, I., Skaugen, T. & Lettenmaier, D. (2007). Hydrologic Effects of Land and Water Management in North America and Asia: 1700? 1992. Hydrology and Earth System Sciences Discussions, 11, 1035-1045.
    • Haddeland, I., Skaugen, T. & Lettenmaier, D. P. (2006b). Anthropogenic Impacts on Continental Surface Water Fluxes. Geophysical Research Letters, 33.
    • Hagemann, S. (2002). An Improved Land Surface Parameter Dataset for Global and Regional Climate Models, Max-Planck-Institut für Meteorologie.
    • Hagemann, S., Chen, C., Clark, D., Folwell, S., Gosling, S. N., Haddeland, I., Hannasaki, N., Heinke, J., Ludwig, F. & Voss, F. (2013). Climate Change Impact on Available Water Resources Obtained Using Multiple Global Climate and Hydrology Models. Earth System Dynamics, 4, 129-144.
    • Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D. & Piani, C. (2011). Impact of a Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three Gcms and Two Hydrology Models. Journal of Hydrometeorology, 12, 556- 578.
    • Hagemann, S. & Dümenil, L. (1997). A Parametrization of the Lateral Waterflow for the Global Scale. Climate Dynamics, 14, 17-31.
    • Hagemann, S. & Gates, L. D. (2001). Validation of the Hydrological Cycle of Ecmwf and Ncep Reanalyses Using the Mpi Hydrological Discharge Model. J. Geophys. Res., 106, 1503- 1510.
    • Hagemann, S. & Gates, L. D. (2003). Improving a Subgrid Runoff Parameterization Scheme for Climate Models by the Use of High Resolution Data Derived from Satellite Observations. Climate Dynamics, 21, 349-359.
    • Hall, J., O'connell, E. & Ewen, J. (2007). On Not Undermining the Science: Coherence, Validation and Expertise. Discussion of Invited Commentary by Keith Beven Hydrological Processes, 20, 3141-3146 (2006). Hydrological Processes, 21, 985-988.
    • Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. (2010). An Estimation of Global Virtual Water Flow and Sources of Water Withdrawal for Major Crops and Livestock Products Using a Global Hydrological Model. Journal of Hydrology, 384, 232-244.
    • Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y. & Tanaka, K. (2008a). An Integrated Model for the Assessment of Global Water Resources - Part 1: Model Description and Input Meteorological Forcing. Hydrology and Earth System Sciences, 12, 1007-1025.
    • Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y. & Tanaka, K. (2008b). An Integrated Model for the Assessment of Global Water Resources - Part 2: Applications and Assessments. Hydrology and Earth System Sciences, 12, 1027-1037.
    • Hannaford, J. & Marsh, T. (2006). An Assessment of Trends in Uk Runoff and Low Flows Using a Network of Undisturbed Catchments. International Journal of Climatology, 26, 1237-1253.
    • Hannaford, J. & Marsh, T. J. (2008). High-Flow and Flood Trends in a Network of Undisturbed Catchments in the Uk. International Journal of Climatology, 28, 1325-1338.
    • Harding, R. J. & Warnaas, T. A. (2011). Water and Global Change: The Watch Projection Outreach Report. In: CENTRE FOR ECOLOGY AND HYDROLOGY (ed.). Wallingford: NERC Centre for Ecology and Hydrology.
    • Hauduc, H., Neumann, M., Muschalla, D., Gamerith, V., Gillot, S. & Vanrolleghem, P. (2011). Towards Quantitative Quality Criteria to Evaluate Simulation Results in Wastewater Treatment-a Critical Review. Watermatex, 11, 46.
    • Hawkins, E. 6/2/2014 The Cascade of Uncertainty in Climate Projections. Climate Lab Book [Online]. Available from: http://www.climate-lab-book.ac.uk/2014/cascade-of-uncertainty/ [Accessed 11/12/2014.
    • Hawkins, E. Reinventing the Colour Wheel. Climate Lab Book [Online]. Available from: http://www.climate-labbook.ac.uk/2015/reinventing-colour-wheel/.
    • Henderson-Sellers, A., Mcguffie, K. & Gross, C. (1995). Sensitivity of Global Climate Model Simulations to Increased Stomatal Resistance and C02 Increases*. Journal of Climate, 8, 1738- 1756.
    • Hipel, K. W. (1981). Geophysical Model Discrimination Using the Akaike Information Criterion. Automatic Control, IEEE Transactions on, 26, 358-378.
    • Hirabayashi, Y., Kanae, S., Emori, S., Oki, T. & Kimoto, M. (2008). Global Projections of Changing Risks of Floods and Droughts in a Changing Climate. Hydrological Sciences, 53, 754-772.
    • Hornberger, G. M. & Spear, R. (1981). Approach to the Preliminary Analysis of Environmental Systems. J. Environ. Manage.;(United States), 12.
    • Horton, R. E. (1933). The Role of Infiltration in the Hydrologic Cycle. Transactions-American Geophysical Union, 14, 446-460.
    • Horton, R. E. (1945). Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geological society of America bulletin, 56, 275-370.
    • Hossain, F., Anagnostou, E. N., Dinku, T. & Borga, M. (2004). Hydrological Model Sensitivity to Parameter and Radar Rainfall Estimation Uncertainty. Hydrological Processes, 18, 3277-3291.
    • Hsu, K.-L., Gupta, H. V. & Sorooshian, S. (1995). Artificial Neural Network Modeling of the Rainfall-Runoff Process. Water Resources Research, 31, 2517-2530.
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2001). River Flow Time Series Prediction with a Range-Dependent Neural Network. Hydrological Sciences Journal, 46, 729-745.
    • Huang, H.-J., Cheng, S.-J., Wen, J.-C. & Lee, J.-H. (2008). Effect of Growing Watershed Imperviousness on Hydrograph Parameters and Peak Discharge. Hydrological Processes, 22, 2075-2085.
    • Hyndman, D. W. (2008). Natural Hazards and Disasters, Brooks/Cole.
    • Imbeaux, É. (1892). La Durance: Régime, Crues Et Inundations, Ch. Dunod.
    • Ipcc (2007). Fourth Assessment Report - Climate Change 2007: Wg1 the Physical Science Basis. Cambridge: Cambridge University Press.
    • Ipcc (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and Ii of the Intergovernmental Panel on Climate Change (Srex). In: FIELD, C. B., BARROS, V., STOCKER, T. F., QIN, D., DOKKEN, D. J., EBI, K. L., MASTRANDREA, M. D., MACH, K. J., G.-K., P., ALLEN, S. K., TIGNOR, M. & MIDGLEY, P. M. (eds.). Cambridge: Intergovernmental Panel on Climate Change.
    • Ipcc (2014). Fifth Assessment Report, Working Group 2, Chapter 3: Freshwater Resources. IPCC.
    • Isi-Mip. (2015). Isi-Mip Output Data [Online]. Available: https://www.pikpotsdam.de/research/climate-impacts-andvulnerabilities/research/rd2-cross-cutting-activities/isi-mip/formodellers/isi-mip-fast-track/output-data [Accessed 10/05/2015.
    • Jain, A. & Srinivasulu, S. (2006). Integrated Approach to Model Decomposed Flow Hydrograph Using Artificial Neural Network and Conceptual Techniques. Journal of Hydrology, 317, 291- 306.
    • Jain, S. & Sudheer, K. (2008). Fitting of Hydrologic Models: A Close Look at the Nash-Sutcliffe Index. Journal of Hydrologic Engineering, 13, 981-986.
    • Jain, S. K., Agarwal, P. K. & Singh, V. P. (2007). Hydrology and Water Resources of India, Springer.
    • Jones, R. N. (2000). Managing Uncertainty in Climate Change Projections-Issues for Impact Assessment. Climatic change, 45, 403-419.
    • Juston, J. M., Kauffeldt, A., Montano, B. Q., Seibert, J., Beven, K. J. & Westerberg, I. K. (2013). Smiling in the Rain: Seven Reasons to Be Positive About Uncertainty in Hydrological Modelling. Hydrological Processes, 27, 1117-1122.
    • Karunasinghe, D. S. K. & Liong, S.-Y. (2006). Chaotic Time Series Prediction with a Global Model: Artificial Neural Network. Journal of Hydrology, 323, 92-105.
    • Kasenow, M. (2001). Applied Ground-Water Hydrology and Well Hydraulics, Water Resources Publications.
    • Kavetski, D., Kuczera, G. & Franks, S. W. (2006). Bayesian Analysis of Input Uncertainty in Hydrological Modeling: 2. Application. Water Resources Research, 42, W03408.
    • Kaye, N. R., Hartley, A. & Hemming, D. (2012). Mapping the Climate: Guidance on Appropriate Techniques to Map Climate Variables and Their Uncertainty. Geosci. Model Dev., 5, 245-256.
    • Kiczko, A., Romanowicz, R. J. & Napiórkowski, J. J. (Year) Published. A Study of Flow Conditions Aimed at Preserving Valuable Wetland Areas in the Upper Narew Valley Using GsaGlue Methodology. Proceedings 21st International Conference on Informatics for Environmental Protection, 2007. 175-183.
    • Kitanidis, P. K. & Bras, R. L. (1980). Real-Time Forecasting with a Conceptual Hydrologic Model: 2. Applications and Results. Water Resources Research, 16, 1034-1044.
    • Kliot, N. (1993). Water Resources and Conflict in the Middle East, Taylor & Francis Group.
    • Knutti, R. & Sedlacek, J. (2013). Robustness and Uncertainties in the New Cmip5 Climate Model Projections. Nature Clim. Change, 3, 369-373.
    • Koirala, S., Yeh, P., Oki, T. & Kanae, S. (2010). Fully Dynamic Groundwater Representation in the Matsiro Land Surface Model. Annual Journal of Hydraulic Engineering, Japan Society of Civil Engineers, 54, 37-42.
    • Krause, P., Boyle, D. P. & Bäse, F. (2005). Comparison of Differenct Efficiency Criteria for Hydrological Model Assessment. Advances in Geosciences, 5, 89-97.
    • Krusz, A. Visualizing Data Uncertainty: An Experiment with D3.Js. Velir Blog [Online]. Available from: http://www.velir.com/blog/index.php/2013/07/11/visualizing-datauncertainty-an-experiment-with-d3-js/.
    • Kundzewicz, Z. W. (1995). New Uncertainty Concepts in Hydrology and Water Resources, Cambridge, Cambridge University Press.
    • Laio, F., Di Baldassarre, G. & Montanari, A. (2009). Model Selection Techniques for the Frequency Analysis of Hydrological Extremes. Water Resources Research, 45, W07416.
    • Lambers, H., Chapin, F. S. & Pons, T. L. (2008). Plant Physiological Ecology, Springer New York.
    • Landau, D. P. & Binder, K. (2005). A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press.
    • Lane, S., Brookes, C., Kirkby, M. & Holden, J. (2004). A Network‐Index‐Based Version of Topmodel for Use with High‐Resolution Digital Topographic Data. Hydrological processes, 18, 191-201.
    • Latham, J., Cumani, R., Rosati, I. & Bloise, M. (2014). Fao Global Land Cover (Glc-Share) Beta-Release 1.0. FAO, Land and Water Division.
    • Lawson, W. (1865). The Geography of River Systems.
    • Ldas (1999). Mapped Static Vegetation Data. NASA.
    • Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W. & Spracklen, D. V. (2011). Emulation of a Complex Global Aerosol Model to Quantify Sensitivity to Uncertain Parameters. Atmos. Chem. Phys., 11, 12253-12273.
    • Lee, L. A., Pringle, K. J., Reddington, C. L., Mann, G. W., Stier, P., Spracklen, D. V., Pierce, J. R. & Carslaw, K. S. (2013). The Magnitude and Causes of Uncertainty in Global Model Simulations of Cloud Condensation Nuclei. Atmos. Chem. Phys., 13, 8879-8914.
    • Legates, D. R. & Mccabe, G. J. (1999). Evaluating the Use of “Goodness-of-Fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resources Research, 35, 233-241.
    • Liang, X., Lettenmaier, D. P., Wood, E. F. & Stephen, J. B. (1994). A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models. Journal of Geophysical Research, 99, 415-428.
    • Light, A. & Bartlein, P. J. (2004). The End of the Rainbow? Color Schemes for Improved Data Graphics. Eos, Transactions American Geophysical Union, 85, 385-391.
    • Lighthill, M. & Whitham, G. (1955). On Kinematic Waves. I. Flood Movement in Long Rivers. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229, 281-316.
    • Lin, G.-F. & Chen, L.-H. (2004). A Non-Linear Rainfall-Runoff Model Using Radial Basis Function Network. Journal of Hydrology, 289, 1-8.
    • Lin, G.-F. & Chen, L.-H. (2005). Time Series Forecasting by Combining the Radial Basis Function Network and the Self-Organizing Map. Hydrological Processes, 19, 1925-1937.
    • Liu, Y. & Gupta, H. V. (2007). Uncertainty in Hydrologic Modeling: Toward an Integrated Data Assimilation Framework. Water Resources Research, 43, W07401.
    • Loos, S., Middelkoop, H., Van Der Perk, M. & Van Beek, R. (2009). Large Scale Nutrient Modelling Using Globally Available Datasets: A Test for the Rhine Basin. Journal of hydrology, 369, 403-415.
    • Loucks, D. P., Van Beek, E., Stedinger, J. R., Dijkman, J. P. M. & Villars, M. T. (2005). Chapter 9: Model Senstivity and Uncertainty Analysis. In: UNESCO (ed.) Water Resources Systems Planning and Management. Paris: United Nations Educational Scientific and Cultural Organization.
    • Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, J., Yang, L. & Merchant, J. W. (2000). Development of a Global Land Cover Characteristics Database and Igbp Discover from 1- Km Avhrr Data. International Journal of Remote Sensing, 21, 1303-1330.
    • Lowi, M. R. (1995). Water and Power: The Politics of a Scarce Resource in the Jordan River Basin, Cambridge University Press.
    • Ludwig, F. & Voss, F. (2009). Watch Techical Report 12: Description of the Watch Modelling Framework. Wageningen University, CESR.
    • Mantovan, P. & Todini, E. (2006). Hydrological Forecasting Uncertainty Assessment: Incoherence of the Glue Methodology. Journal of Hydrology, 330, 368-381.
    • Mantovan, P., Todini, E. & Martina, M. L. V. (2007). Reply to Comment by Keith Beven, Paul Smith and Jim Freer on “Hydrological Forecasting Uncertainty Assessment: Incoherence of the Glue Methodology”. Journal of Hydrology, 338, 319-324.
    • Marshall, L., Nott, D. & Sharma, A. (2005). Hydrological Model Selection: A Bayesian Alternative. Water Resources Research, 41, W10422.
    • Martinec, J., Rango, A. & Robert, R. (1998). Snowmelt Runoff Model (Srm) User's Manual. Available: http://hydrolab.arsusda.gov/cgibin/srmhome [Accessed 19/6/2013].
    • Maupin, M. A. & Barber, N. L. (2005). Estimated Withdrawals from Principal Aquifers in the United States, 2000, US Department of the Interior, US Geological Survey.
    • Mccarthy, J. J. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group Ii to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
    • Mccuen, R., Knight, Z. & Cutter, A. (2006). Evaluation of the NashSutcliffe Efficiency Index. Journal of Hydrologic Engineering, 11, 597-602.
    • Mckay, M. D., Beckman, R. J. & Conover, W. J. (1979). Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21, 239-245.
    • Mcleod, A. I., Noakes, D. J., Hipel, K. W. & Thompstone, R. M. (1987). Combining Hydrologic Forecasts. Journal of Water Resources Planning and Management, 113, 29-41.
    • Mcmichael, C. E., Hope, A. S. & Loaiciga, H. A. (2006). Distributed Hydrological Modelling in California Semi-Arid Shrublands: Mike She Model Calibration and Uncertainty Estimation. Journal of Hydrology, 317, 307-324.
    • Meehl, G. A., Boer, G. J., Covey, C., Latif, M. & Stouffer, R. J. (2000). The Coupled Model Intercomparison Project (Cmip). Bulletin of the American Meteorological Society, 81, 313-318.
    • Meigh, J. R., Mckenzie, A. A. & Sene, K. J. (1999). A Grid-Based Approach to Water Scarcity Estimates for Eastern and Southern Africa. Water Resources Management, 13, 85-115.
    • Mekonnen, M. M. & Hoekstra, A. Y. (2011). National Water Footprint Accounts: The Green,Blue and Grey Water Footprint of Production and Consumption. Value of Water Research Report Series. Delft: The Netherlands: UNESCO-IHE.
    • Mendelsohn, J. & Obeid, S. E. (2004). Okavango River: The Flow of a Lifeline, Struik.
    • Met Office. (2015). Uk Climate Averages [Online]. Available: http://www.metoffice.gov.uk/public/weather/climate/ [Accessed 03/08/2015.
    • Mishra, V., Cherkauer, K. A. & Shukla, S. (2010). Assessment of Drought Due to Historic Climate Variability and Projected Future Climate Change in the Midwestern United States. Journal of Hydrometeorology, 11, 46-68.
    • Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M. & New, M. (2004). A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: The Observed Record (1901-2000) and 16 Scenarios (2001-2100). Tyndall Centre for Climate Change Research Working Paper, 55, 25.
    • Modarres, R. & Ouarda, T. B. M. J. (2013). Generalized Autoregressive Conditional Heteroscedasticity Modelling of Hydrologic Time Series. Hydrological Processes, 27, 3174-3191.
    • Monteith, J. L. (1965). Evaporation and Environment. Symposium of the Society for Experimental Biology, 19, 205-234.
    • Moore, R. (1985). The Probability-Distributed Principle and Runoff Production at Point and Basin Scales. Hydrological Sciences Journal, 30, 273-297.
    • Moore, R. J. (2007). The Pdm Rainfall-Runoff Model. Hydrology and Earth System Sciences, 11, 483-499.
    • Moors, E. J., Groot, A., Biemans, H., Van Scheltinga, C. T., Siderius, C., Stoffel, M., Huggel, C., Wiltshire, A., Mathison, C. & Ridley, J. (2011). Adaptation to Changing Water Resources in the Ganges Basin, Northern India. Environmental Science & Policy, 14, 758-769.
    • Moradkhani, H., Hsu, K. L., Gupta, H. & Sorooshian, S. (2005a). Uncertainty Assessment of Hydrologic Model States and Parameters: Sequential Data Assimilation Using the Particle Filter. Water Resources Research, 41.
    • Moradkhani, H., Sorooshian, S., Gupta, H. V. & Houser, P. R. (2005b). Dual State-Parameter Estimation of Hydrological Models Using Ensemble Kalman Filter. Advances in Water Resources, 28, 135-147.
    • Morris, M. D. (1991). Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics, 33, 191-174.
    • Mugetti, A., Brieva, C., Giangiobbe, S., Gallicchio, E., Pacheco, F., Pagani, A., Calcano, A., González, S., Natale, O., Faure, M., Rafaelli, S., Mangnani, C., Moyano, M. C., Seoane, R. & Enriquez, I. (2004). Patagonian Shelf, Giwa Regional Assessment 38. In: UNEP (ed.) Global International Waters Assessment. University of Kalmar, Sweden: United Nations Environment Programme.
    • Muleta, M. K. & Nicklow, J. W. (2005). Sensitivity and Uncertainty Analysis Coupled with Automatic Calibration for a Distributed Watershed Model. Journal of Hydrology, 306, 127-145.
    • Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M. & Döll, P. (2014). Sensitivity of Simulated Global-Scale Freshwater Fluxes and Storages to Input Data, Hydrological Model Structure, Human Water Use and Calibration. Hydrol. Earth Syst. Sci. Discuss., 11, 1583-1649.
    • Mulvany, T. (1851). On the Use of Self-Registering Rain and Flood Gauges in Making Observations of the Relations of Rainfall and Flood Discharges in a Given Catchment. Proceedings of the institution of Civil Engineers of Ireland, 4, 18-33.
    • Mutua, F. M. (1994). The Use of the Akaike Information Criterion in the Identification of an Optimum Flood Frequency Model. Hydrological Sciences Journal, 39, 235-244.
    • Najafi, M. R., Moradkhani, H. & Jung, I. W. (2011). Assessing the Uncertainties of Hydrologic Model Selection in Climate Change Impact Studies. Hydrological Processes, 25, 2814-2826.
    • Nash, J. (1957). The Form of the Instantaneous Unit Hydrograph. IAHS Publ, 45, 114-121.
    • Nash, J. E. & Sutcliffe, J. V. (1970). River Flow Forecasting through Conceptual Models Part I -- a Discussion of Principles. Journal of Hydrology, 10, 282-290.
    • Nayak, P., Sudheer, K., Rangan, D. & Ramasastri, K. (2004). A Neuro-Fuzzy Computing Technique for Modeling Hydrological Time Series. Journal of Hydrology, 291, 52-66.
    • Neuman, S. (2003). Maximum Likelihood Bayesian Averaging of Uncertain Model Predictions. Stochastic Environmental Research and Risk Assessment, 17, 291-305.
    • New, M., Anderson, K., Fung, F. & Thornton, P. (2011). Sr08: The Possible Impacts of High Levels of Climate Change in 2060 and Implications for Migration. UK Government Foresight Project, Migration and Global Change. UK: Government Office for Science.
    • Ng, T. L., Eheart, J. W. & Cai, X. M. (2010). Comparative Calibration of a Complex Hydrologic Model by Stochastic Methods Glue and Pest. Transactions of the Asabe, 53, 1773-1786.
    • Ngo‐Duc, T., Polcher, J. & Laval, K. (2005). A 53‐Year Forcing Data Set for Land Surface Models. Journal of Geophysical Research: Atmospheres (1984-2012), 110.
    • Nijssen, B., O'donnell, G. M., Hamlet, A. F. & Lettenmaier, D. P. (2001a). Hydrologic Sensitvity of Global Rivers to Climate Change. Climatic Change, 50, 143-175.
    • Nijssen, B., O'donnell, G. M., Lettenmaier, D. P., Lohmann, D. & Wood, E. F. (2001b). Predicting the Discharge of Global Rivers. Journal of Climate, 14, 3307-3323.
    • Noaa. (2015). Climate Normals [Online]. Available: https://www.ncdc.noaa.gov/data-access/land-based-stationdata/land-based-datasets/climate-normals [Accessed 03/08/2015.
    • O'hagan, A. (2006). Bayesian Analysis of Computer Code Outputs: A Tutorial. Reliability Engineering & System Safety, 91, 1290-1300.
    • Oehler, S., Hartl, D., Lopez, R., Malak, R. & Lagoudas, D. (2012). Design Optimization and Uncertainty Analysis of Sma Morphing Structures. Smart Materials and Structures, 21, 094016.
    • Ogata, T., Valeriano, O., Yoshimura, C., Liengcharernsit, W. & Hirabayashi, Y. (2012). Past and Future Hydrological Simulations of Chao Phraya River Basin. Journal of Japan Society of Civil Engineers Ser. B, 1, 68.
    • Oki, T., Agata, Y., Kanae, S., Saruhashi, T., Yang, D. & Musiake, K. (2001). Global Assessment of Current Water Resources Using Total Runoff Integrating Pathways. Hydrological Sciences Journal, 46, 983-995.
    • Osborne, T. (2009). A User Guide for Climgen: A Flexible Tool for Generating Montly Climate Data Sets and Scenarios. University of East Anglua, Norwich: Climate Research Unit.
    • Palisade Corporation (2010). Guide to Using @Risk: Risk Analysis and Simulation Add-in for Microsoft Excel. Ithaca, NY, USA.
    • Pappenberger, F. & Beven, K. J. (2006). Ignorance Is Bliss: Or Seven Reasons Not to Use Uncertainty Analysis. Water Resources Research, 42, W05302.
    • Parajka, J., Naeimi, V., Blöschl, G., Wagner, W., Merz, R. & Scipal, K. (2006). Assimilating Scatterometer Soil Moisture Data into Conceptual Hydrologic Models at the Regional Scale. Hydrology and Earth System Sciences Discussions, 10, 353-368.
    • Park, N. & Ip, W. H. (2010). Advances in Geosciences: Hydrological Science, World Scientific Publishing Company, Incorporated.
    • Pebesma, E. J., Switzer, P. & Loague, K. (2005). Error Analysis for the Evaluation of Model Performance: Rainfall-Runoff Event Time Series Data. Hydrological Processes, 19, 1529-1548.
    • Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. (2007). Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci., 11, 1633-1644.
    • Penman, H. (1956). Evaporation: An Introductory Survey. Neth. J. Agric. Sci, 4, 9-29.
    • Penman, H. L. (1948). Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193, 120-145.
    • Pest. (2014). Pest: Uncertainty Analysis [Online]. Available: http://www.pesthomepage.org/Uncertainty_Analysis.php [Accessed 15/06/2014.
    • Pinder, G. F. & Jones, J. F. (1969). Determination of the Ground‐Water Component of Peak Discharge from the Chemistry of Total Runoff. Water Resources Research, 5, 438- 445.
    • Piniewski, M., Laizé, C. L., Acreman, M. C., Okruszko, T. & Schneider, C. (2014). Effect of Climate Change on Environmental Flow Indicators in the Narew Basin, Poland. Journal of Environmental Quality, 43, 155-167.
    • Postel, S. (1999). Pillar of Sand: Can the Irrigation Miracle Last?, W.W. Norton.
    • Prideaux, B. & Cooper, M. (2009). River Tourism, CABI.
    • Priestley, C. H. B. & Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100, 81-92.
    • Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y. & Wisser, D. (2014). Hydrological Droughts in the 21st Century, Hotspots and Uncertainties from a Global Multimodel Ensemble Experiment. Proceedings of the National Academy of Sciences, 111, 3262- 3267.
    • Qi, W., Zhang, C., Chu, J. & Zhou, H. (2013). Sobol' Sensitivity Analysis for Topmodel Hydrological Model: A Case Study for the Biliu River Basin, China. Journal of Hydrology and Environment Research, Technical Paper, 1.
    • Qu, J., Xu, Z., Long, Q., Wang, L., Shen, X., Zhang, J. & Cai, Y. (2004). East China Sea, Giwa Regional Assessment 36. In: UNEP (ed.) Global International Waters Assessment. University of Kalmar, Sweden: United Nations Environment Programme.
    • Ratto, M., Tarantola, S. & Saltelli, A. (2001). Sensitivity Analysis in Model Calibration: Gsa-Glue Approach. Computer Physics Communications, 136, 212-224.
    • Rawlins, M. A., Lammers, R. B., Frolking, S., Fekete, B. & Vorosmarty, C. (2003). Simulating Pan-Arctic Runoff with a Macro-Scale Terrestrial Water Balance Model. Hydrological Processes, 17, 3632-2539.
    • Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.-J. & Dmip Participants, A. (2004). Overall Distributed Model Intercomparison Project Results. Journal of Hydrology, 298, 27- 60.
    • Refsgaard, J. C. & Knudsen, J. (1996). Operational Validation and Intercomparison of Different Types of Hydrological Models. Water Resources Research, 32, 2189-2202.
    • Reusser, D. E., Blume, T., Schaefli, B. & Zehe, E. (2009). Analysing the Temporal Dynamics of Model Performance for Hydrological Models. Hydrology And Earth System Sciences, 13, 999-1018.
    • Riad, S., Mania, J., Bouchaou, L. & Najjar, Y. (2004). Predicting Catchment Flow in a Semi-Arid Region Via an Artificial Neural Network Technique. Hydrological Processes, 18, 2387-2393.
    • Ryan, S. (2009). Murray-Darling Basin - Integrated Management in a Large, Dry and Thirsty Basin. Handbook of Catchment Management. Wiley-Blackwell.
    • Sadegh, M. & Vrugt, J. A. (2013). Bridging the Gap between Glue and Formal Statistical Approaches: Approximate Bayesian Computation. Hydrol. Earth Syst. Sci., 17, 4831-4850.
    • Sage: Center for Sustainability and the Global Environment (2014). Global River Discharge Database (Rivdis). In: SAGE: CENTER FOR SUSTAINABILITY AND THE GLOBAL ENVIRONMENT (ed.). http://www.sage.wisc.edu/riverdata/.
    • Saleh, D. K. (2010). Stream Gage Descriptions and Streamflow Statistics for Sites in the Tigris River and Euphrates River Basins, Iraq, US Department of the Interior, US Geological Survey.
    • Saltelli, A., Chan, K. & Marian Scott, E. (eds.) 2000. Sensitivity Analysis, Chichester, UK: John Wiley & Sons Ltd.
    • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. & Tarantola, S. (2008). Global Sensitivity Analysis. The Primer, Chichester, England, John Wiley & Sons Ltd.
    • Salter, P. J. & Williams, J. B. (1969). The Influence of Texture on the Moisture Characteristics of Soil. Journal of Soil Science, 20, 126- 131.
    • Savoskul, O. S. & Smakhtin, V. (2013). Glacier Systems and Seasonal Snow Cover in Six Major Asian River Basins: Hydrological Role under Changing Climate, Colombo, Sri Lanka, International Water Management Institute (IMWI).
    • Saxton, K. & Rawls, W. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70, 1569-1578.
    • Schaake, J. C., Hamill, T. M., Buizza, R. & Clark, M. (2007). Hepex: The Hydrological Ensemble Prediction Experiment. Bulletin of the American Meteorological Society, 88, 1541-1547.
    • Schaefli, B. & Gupta, H. V. (2007). Do Nash Values Have Value? Hydrological Processes, 21, 2075-2080.
    • Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., ColónGonzález, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L. & Kabat, P. (2014). Multimodel Assessment of Water Scarcity under Climate Change. Proceedings of the National Academy of Sciences, 111, 3245-3250.
    • Schneider, S. H. (1983). Co2, Climate and Society: A Brief Overview. Social Science Research and Climate Change. Springer.
    • Schneider, S. H. & Kuntz-Duriseti, K. (2002). Uncertainty and Climate Change Policy. Climate change policy: a survey, 53-87.
    • Scurlock, J. M. O., Asner, G. P. & Gower, S. T. (2001). Worldwide Historical Estimates of Leaf Area Index, 1932-2000. Tennessee: NASA.
    • Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D. & Bounoua, L. (1996). A Revised Land Surface Parameterization (Sib2) for Atmospheric Gcms. Part I: Model Formulation. Journal of Climate, 9, 676-705.
    • Sene, K. J., Tate, E. L. & Farquharson, F. a. K. (2001). Sensitivity Studies of the Impacts of Climate Change on White Nile Flows. Climatic Change, 50, 177-208.
    • Shaw, E. M., Beven, K. J., Chappell, N. A. & Lamb, R. (2011). Hydrology in Practice, Abingdon, Oxon, Spon Press.
    • Shen, Y., Oki, T., Utsumi, N., Kanae, S. & Hanasaki, N. (2008). Projection of Future World Water Resources under Sres Scenarios: Water Withdrawal/Projection Des Ressources En Eau Mondiales Futures Selon Les Scénarios Du Rsse: Prélèvement D'eau. Hydrological Sciences Journal, 53, 11-33.
    • Sherman, L. K. (1932). Streamflow from Rainfall by the Unit-Graph Method. Eng. News Record, 108, 501-505.
    • Sherman, L. K. (1949). The Unit Hydrograph Method. Physics of the Earth. OE Menizer Ed. Dover Publications, Inc. New York, NY, 514-525.
    • Shiklomanov, I. A. & Rodda, J. C. (2003). World Water Resources at the Beginning of the Twenty-First Century, Cambridge University Press Cambridge.
    • Shrestha, R. R., Peters, D. L. & Schnorbus, M. A. (2013). Evaluating the Ability of a Hydrologic Model to Replicate Hydro-Ecologically Relevant Indicators. Hydrological Processes, n/a-n/a.
    • Shukla, S. & Lettenmaier, D. P. (2011). Seasonal Hydrologic Prediction in the United States: Understanding the Role of Initial Hydrologic Conditions and Seasonal Climate Forecast Skill. Hydrol. Earth Syst. Sci. Discuss., 8, 6565-6592.
    • Siderius, C., Biemans, H., Wiltshire, A., Rao, S., Franssen, W., Kumar, P., Gosain, A., Van Vliet, M. & Collins, D. (2013). Snowmelt Contributions to Discharge of the Ganges. Science of The Total Environment, 468, S93-S101.
    • Singh, V. P., Sharma, N. & Ojha, C. S. P. (2004). The Brahmaputra Basin Water Resources, Kluwer Academic Publishers.
    • Singh, V. P. & Woolhiser, D. A. (2002). Mathematical Modeling of Watershed Hydrology. Journal of Hydrological Engineering, 7, 270-293.
    • Smith, K. A. (2011). Evaluation of Land Management Impacts on Low Flows in Northern England. MSc by Research, Durham University.
    • Smith, L. A. & Stern, N. (2011). Uncertainty in Science and Its Role in Climate Policy. Philosophical Transactions of the Royal Society A., 369, 1-24.
    • Smith, M. B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z., Mizukami, N., Anderson, E. A. & Cosgrove, B. A. (2012a). The Distributed Model Intercomparison Project - Phase 2: Motivation and Design of the Oklahoma Experiments. Journal of Hydrology, 418-419, 3-16.
    • Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Reed, S. M., Cui, Z., Moreda, F., Cosgrove, B. A., Mizukami, N. & Anderson, E. A. (2012b). Results of the Dmip 2 Oklahoma Experiments. Journal of Hydrology, 418-419, 17-48.
    • Smith, M. B., Seo, D.-J., Koren, V. I., Reed, S. M., Zhang, Z., Duan, Q., Moreda, F. & Cong, S. (2004). The Distributed Model Intercomparison Project (Dmip): Motivation and Experiment Design. Journal of Hydrology, 298, 4-26.
    • Snidvongs, A. & Teng, S.-K. (2006). Mekong River, Giwa Regional Assessment 55. In: UNEP (ed.) Global International Waters Assessment. University of Kalmar, Sweden: United Nations Environment Programme.
    • Sobol', I. M. (1993). Sensitivity Estimates for Non-Linear Mathematical Models. Mathematical Modelling and Computational Experiment, 1, 407-414.
    • Soil Information for Environmental Modeling and Ecosystem Management. (2014). Soil Texture Classification Triangle [Online]. Available: http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov &fract&methods [Accessed 24/05/2014.
    • Sperna Weiland, F. C. (2011). Hydrological Impacts of Climate Change: Interpretation of Uncertainties Introduced by Global Models of Climate and Hydrology. Utrecht Studies in Earth Sciences, 6.
    • Sperna Weiland, F. C., Van Beek, L. P. H., Kwadijk, J. C. J. & Bierkens, M. F. P. (2010). The Ability of a Gcm-Forced Hydrological Model to Reproduce Global Discharge Variability. Hydrol. Earth Syst. Sci., 14, 1595-1621.
    • Sperna Weiland, F. C., Van Beek, L. P. H., Kwadijk, J. C. J. & Bierkens, M. F. P. (2012). Global Patterns of Change in Discharge Regimes for 2100. Hydrol. Earth Syst. Sci., 16, 1047- 1062.
    • Spiegelhalter, D., Pearson, M. & Short, I. (2011). Visualizing Uncertainty About the Future. Science, 333, 1393-1400.
    • Spruill, C. A., Workman, S. R. & Taraba, J. L. (2000). Simulation of Daily and Monthly Stream Discharge from Small Watersheds Using the Swat Model. Transactions of the American Society of Agricultural Engineers, 43, 1431-1439.
    • Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L., Van Lanen, H., Sauquet, E., Demuth, S., Fendekova, M. & Jordar, J. (2010). Streamflow Trends in Europe: Evidence from a Dataset of nearNatural Catchments. Hydrology and Earth System Sciences, 14, p. 2367-p. 2382.
    • Sugawara, M. (1967). The Flood Forecasting by a Series Storage Type Model. Int. Symposium Floods and their Computation. Association of Hydrologic Sciences.
    • Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. (2015). Influence of Internal Variability on Arctic Sea-Ice Trends. Nature Clim. Change, 5, 86-89.
    • Takata, K., Emori, S. & Watanabe, T. (2003). Development of the Minimal Advanced Treatments of Surface Interaction and Runoff. Global and Planetary Change, 38, 209-222.
    • Tang, Q. (2006). A Distributed Biosphere Hydrological Model for Continental Scale River Basins. Ph.D., University of Tokyo.
    • Tang, Q., Oki, T., Kanae, S. & Hu, H. (2007). Hydrological Cycles Change in the Yellow River Basin During the Last Half of the Twentieth Century. Journal of Climate, 21, 1790-1806.
    • Tao, H. (2008). Calibration, Sensitivity and Uncertainty Analysis in Surface Water Quality Modeling. PhD, Tufts University.
    • Tateishi, R., Bayaer, Ghar, M. A., Al-Bilbisi, H., Tsendayush, J., Shalaby, A., Kasimu, A., Hoan, N. T., Kobayashi, T., Alsaaideh, B., Rahman, M. M., Tsvengee, E., Yamada, Y. & Kajikawa, S. (2008). A New Global Land Cover Map, Glcnmo. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing.
    • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. (2011). An Overview of Cmip5 and the Experiment Design. Bulletin of the American Meteorological Society, 93, 485-498.
    • Tebaldi, C. & Knutti, R. (2007). The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2053-2075.
    • Terragis. (2007). Soil Moisture Classification [Online]. UNSW. Available: http://www.terragis.bees.unsw.edu.au/terraGIS_soil/sp_watersoil_moisture_classification.html [Accessed 15/06/2014.
    • Theis, C. V. (1935). The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground Water Storage. Transactions-American Geophysical Union, 16, 519-524.
    • Thiemann, M., Trosset, M., Gupta, H. & Sorooshian, S. (2001). Bayesian Recursive Parameter Estimation for Hydrologic Models. Water Resources Research, 37, 2521-2535.
    • Thompson, J., Green, A., Kingston, D. & Gosling, S. (2013). Assessment of Uncertainty in River Flow Projections for the Mekong River Using Multiple Gcms and Hydrological Models. Journal of hydrology, 486, 1-30.
    • Thoms, M. C., Rayburg, S. C. & Neave, M. R. (2007). Physocal Diversity and Assessment of a Large River System: The MurratDarling Basin, Australia. In: GUPTA, A. (ed.) Large Rivers: Geomorphology and Management. Chichester, England: John Wiley & Sons.
    • Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical review, 38, 55-94.
    • Times Books (2009). The Times Concise Atlas of the World, London, HarperCollins Publishers.
    • Todini, E. (1996). The Arno Rainfall-Runoff Model. Journal of Hydrology, 175, 339-382.
    • Todini, E. (2007). Hydrological Catchment Modelling: Past, Present and Future. Hydrology and Earth System Sciences, 11, 468-482.
    • Todini, E. & Mantovan, P. (2007). Comment On: 'On Undermining the Science?' by Keith Beven. Hydrological Processes, 21, 1633- 1638.
    • Trambauer, P., Maskey, S., Winsemius, H., Werner, M. & Uhlenbrook, S. (2013). A Review of Continental Scale Hydrological Models and Their Suitability for Drought Forecasting in (Sub-Saharan) Africa. Physics and Chemistry of the Earth, Parts A/B/C, 66, 16-26.
    • Tsyban, A. V., Titova, G. D., Schuka, S. A., Ranenko, V. V. & A., I. Y. (2005). Russian Arctic, Giwa Regional Assessment 1a. In: UNEP (ed.) Global International Waters Assessment. University of Kalmar, Sweden: United Nations Environment Programme.
    • University of Cambridge. (2009). The Darwin Cluster: Introduction and Brief History [Online]. Available: http://www.hpc.cam.ac.uk/services/darwin.html [Accessed 16/03/2015.
    • University of Leicester. (2015). Alice Architecture [Online]. Available: http://www2.le.ac.uk/offices/itservices/ithelp/services/hpc/alice/ar chitecture [Accessed 16/03/2015.
    • Usda Soil Conservation Service (1987). Soil Mechanics Level I Module 3 - Usda Textural Soil Classification Study Guide. United States Department of Agriculture.
    • Vajda, S., Valko, P. & Turanyi, T. (1985). Principal Component Analysis of Kinetic Models. International Journal of Chemical Kinetics, 17, 55-81.
    • Van Beek, L. P. H. & Bierkens, M. F. P. (2008). The Global Hydrological Model Pcr-Globwb: Conceptualization, Parameterization and Verification. Utrecht, The Netherlands: Department of Physical Geography, Utrecht University.
    • Van Beek, L. P. H., Wada, Y. & Bierkens, M. F. P. (2011). Global Monthly Water Stress: 1. Water Balance and Water Availability. Water Resour. Res., 47, W07517.
    • Vázquez, R. F., Feyen, L., Feyen, J. & Refsgaard, J. C. (2002). Effect of Grid Size on Effective Parameters and Model Performance of the Mike-She Code. Hydrological Processes, 16, 355-372.
    • Velázquez, J. A., Schmid, J., Ricard, S., Muerth, M. J., Gauvin StDenis, B., Minville, M., Chaumont, D., Caya, D., Ludwig, R. & Turcotte, R. (2013). An Ensemble Approach to Assess Hydrological Models' Contribution to Uncertainties in the Analysis of Climate Change Impact on Water Resources. Hydrol. Earth Syst. Sci., 17, 565-578.
    • Verdhen, A. & Chahar, B. R. (2012). Efficiency of Snowmelt Modelling Approaches in Watershed Models. Internatinoal Conference on SWAT-2012. Dehli India.
    • Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F. & Alcamo, J. (2012). Modeling Variable River Flow Velocity on Continental Scale: Current Situation and Climate Change Impacts in Europe. Journal of Hydrology, 424, 238-251.
    • Villarini, G., Serinaldi, F. & Krajewski, W. F. (2008). Modeling RadarRainfall Estimation Uncertainties Using Parametric and NonParametric Approaches. Advances in Water Resources, 31, 1674-1686.
    • Vörösmarty, C. J., Federer, C. A. & Schloss, A. L. (1998). Potential Evaporation Functions Compared on Us Watersheds: Possible Implications for Global-Scale Water Balance and Terrestrial Ecosystem Modeling. Journal of Hydrology, 207, 147-169.
    • Vörösmarty, C. J., Moore, B., Grace, A. L., Gildea, M. P., Melillo, J. M., Peterson, B. J., Rastetter, E. B. & Steudler, P. A. (1989). Continental Scale Models of Water Balance and Fluvial Transport: An Application to South America. Global biogeochemical cycles, 3, 241-265.
    • Voß, F. & Flörke, M. (2010). Watch Technical Report No 23. Spatially Explicit Estimates of Past and Present Manufacturing and Energy Water Use. In: WATCH (ed.). CESR.
    • Vrugt, J., Gupta, H., Bouten, W. & Sorooshian, S. (Year) Published. A Shuffled Complex Evolution Metropolis Algorithm for Optimization and Uncertainty Assessment of Hydrological Model Parameters. AGU Fall Meeting Abstracts, 2002. 03.
    • Vrugt, J. A., Diks, C. G., Gupta, H. V., Bouten, W. & Verstraten, J. M. (2005). Improved Treatment of Uncertainty in Hydrologic Modeling: Combining the Strengths of Global Optimization and Data Assimilation. Water Resources Research, 41.
    • Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W. & Sorooshian, S. (2003a). Effective and Efficient Algorithm for Multiobjective Optimization of Hydrologic Models. Water Resources Research, 39.
    • Vrugt, J. A., Gupta, H. V., Bouten, W. & Sorooshian, S. (2003b). A Shuffled Complex Evolution Metropolis Algorithm for Optimization and Uncertainty Assessment of Hydrologic Model Parameters. Water Resources Research, 39, 1201.
    • Vrugt, J. A. & Sadegh, M. (2013). Toward Diagnostic Model Calibration and Evaluation: Approximate Bayesian Computation. Water Resources Research, 49, 4335-4345.
    • Vrugt, J. A., Ter Braak, C., Diks, C., Robinson, B. A., Hyman, J. M. & Higdon, D. (2009a). Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling. International Journal of Nonlinear Sciences and Numerical Simulation, 10, 273-290.
    • Vrugt, J. A., Ter Braak, C. J., Clark, M. P., Hyman, J. M. & Robinson, B. A. (2008). Treatment of Input Uncertainty in Hydrologic Modeling: Doing Hydrology Backward with Markov Chain Monte Carlo Simulation. Water Resources Research, 44.
    • Vrugt, J. A., Ter Braak, C. J. F., Gupta, H. V. & Robinson, B. A. (2009b). Equifinality of Formal (Dream) and Informal (Glue) Bayesian Approaches in Hydrologic Modeling? Stochastic Environmental Research and Risk Assessment, 23, 1011-1026.
    • Wada, Y., Van Beek, L. P. H., Van Kempen, C. M., Reckman, J. W. T. M., Vasak, S. & Bierkens, M. F. P. (2010). Global Depletion of Groundwater Resources. Geophys. Res. Lett., 37.
    • Wada, Y., Van Beek, L. P. H., Viviroli, D., Dürr, H. H., Weingartner, R. & Bierkens, M. F. P. (2011). Global Monthly Water Stress: 2. Water Demand and Severity of Water Stress. Water Resour. Res., 47, W07518.
    • Wagener, T., Mcintyre, N., Lees, M., Wheater, H. & Gupta, H. (2003). Towards Reduced Uncertainty in Conceptual Rainfall‐Runoff Modelling: Dynamic Identifiability Analysis. Hydrological Processes, 17, 455-476.
    • Wagener, T. & Wheater, H. S. (2006). Parameter Estimation and Regionalization for Continuous Rainfall-Runoff Models Including Uncertainty. Journal of Hydrology, 320, 132-154.
    • Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q. & Birkholzer, J. T. (2014). Making Sense of Global Sensitivity Analyses. Computers & Geosciences, 65, 84-94.
    • Wallace, J. S. & Gregory, P. J. (2002). Water Resources and Their Use in Food Production Systems. Aquatic Sciences - Research Across Boundaries, 64, 363-375.
    • Wang, L., Koike, T., Yang, K., Jackson, T. J., Bindlish, R. & Yang, D. (2009a). Development of a Distributed Biosphere Hydrological Model and Its Evaluation with the Southern Great Plains Experiments (Sgp97 and Sgp99). Journal of Geophysical Research: Atmospheres, 114, D08107.
    • Wang, L., Koike, T., Yang, K. & Yeh, P. J.-F. (2009b). Assessment of a Distributed Biosphere Hydrological Model against Streamflow and Modis Land Surface Temperature in the Upper Tone River Basin. Journal of Hydrology, 377, 21-34.
    • Ward, R. C., Ward, R. C. & Robinson, M. (2000). Principles of Hydrology, McGraw-Hill.
    • Warren, R., De La Nava Santos, S., Arnell, N. W., Bane, M., Barker, T., Barton, C., Ford, R., Füssel, H. M., Hankin, R. K. S., Klein, R., Linstead, C., Kohler, J., Mitchell, T. D., Osborn, T. J., Pan, H., Raper, S. C. B., Riley, G., Schellnhüber, H. J., Winne, S. & Anderson, D. (2008). Development and Illustrative Outputs of the Community Integrated Assessment System (Cias), a MultiInstitutional Modular Integrated Assessment Approach for Modelling Climate Change. Environmental Modelling & Software, 23, 592-610.
    • Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O. & Schewe, J. (2014). The Inter-Sectoral Impact Model Intercomparison Project (Isi-Mip): Project Framework. Proceedings of the National Academy of Sciences, 111, 3228- 3232.
    • Weedon, G. P., Gomes, S., Viterbo, P., Osterle, H., Adam, J. C., Bellouin, N., Boucher, O. & Best, M. (2010). Technical Report No 22. The Watch Forcing Data 1958-2001: A Meteorological Forcing Dataset for Land Surface - and Hydrological - Models. European Union Water and Global Change Project.
    • Weedon, G. P., Prudhomme, C., Crooks, S., Ellis, R. J., Folwell, S. S. & Best, M. J. (2014). Evaluating the Performance of Hydrological Models Via Cross-Spectral Analysis: Case Study of the Thames Basin, Uk. Journal of Hydrometeorology.
    • Wei, S., Song, J. & Khan, N. I. (2012). Simulating and Predicting River Discharge Time Series Using a Wavelet-Neural Network Hybrid Modelling Approach. Hydrological Processes, 26, 281-296.
    • Werth, S., Guntner, A., Petrovic, S. & Schmidt, R. (2009). Integration of Grace Mass Variations into a Global Hydrological Model. Earth and Planetary Science Letters, 277, 166-173.
    • Wesseling, C. G., Karssenberg, D. J., Burrough, P. A. & Van Deursen, W. P. A. (1996). Integrating Dynamic Environmental Models in Gis: The Development of a Dynamic Modelling Language. Transactions in GIS, 1, 40-48.
    • Wilby, R. L. (2005). Uncertainty in Water Resource Model Parameters Used for Climate Change Impact Assessment. Hydrological Processes, 19, 3201-3219.
    • Wilby, R. L. & Dessai, S. (2010). Robust Adaptation to Climate Change. Weather, 65, 180-185.
    • Wilby, R. L. & Harris, I. (2006). A Framework for Assessing Uncertainties in Climate Change Impacts: Low-Flow Scenarios for the River Thames, Uk. Water Resour. Res., 42, W02419.
    • Wilkinson, R. D. (2013). Approximate Bayesian Computation (Abc) Gives Exact Results under the Assumption of Model Error. Statistical Applications in Genetics and Molecular Biology.
    • Willmott, C. J. (1981). On the Validation of Models. Physical Geography, 2, 184-194.
    • Willmott, C. J. & Matsuura, K. (2005). Advantages of the Mean Absolute Error (Mae) over the Root Mean Square Error (Rmse) in Assessing Average Model Performance. Climate Research, 30, 79-82.
    • Wilson, M. & Henderson‐Sellers, A. (1985). A Global Archive of Land Cover and Soils Data for Use in General Circulation Climate Models. Journal of Climatology, 5, 119-143.
    • Wisser, D., Fekete, B. M., Vörosmarty, C. J. & Schumann, A. H. (2010). Reconstructing 20th Century Global Hydrography: A Contribution to the Global Terrestrial Network-Hydrology (Gtn-H). Hydrology and Earth System Sciences, 14, 1-24.
    • Wood, E. F., Lettenmaier, D. P. & Zartarian, V. G. (1992). A Land‐Surface Hydrology Parameterization with Subgrid Variability for General Circulation Models. Journal of Geophysical Research: Atmospheres (1984-2012), 97, 2717-2728.
    • Woodward, J. C., Macklin, M. G., Krom, M. D. & Williams, M. a. J. (2007). The Nile: Evolution, Quaternary River Environments and Material Fluxes. In: GUPTA, A. (ed.) Large Rivers: Geomorphology and Management. Chichester, England: John Wiley & Sons Ltd.
    • Zeng, X., Dickinson, R. E., Walker, A., Shaikh, M., Defries, R. S. & Qi, J. (2000). Derivation and Evaluation of Global 1-Km Fractional Vegetation Cover Data for Land Modeling. Journal of Applied Meteorology, 39, 826-839.
    • Zhao, Q., Ye, B., Ding, Y., Zhang, S., Yi, S., Wang, J., Shangguan, D., Zhao, C. & Han, H. (2013). Coupling a Glacier Melt Model to the Variable Infiltration Capacity (Vic) Model for Hydrological Modeling in North-Western China. Environmental Earth Sciences, 68, 87-101.
    • Zhao, R.-J. & Liu, H. (1992). The Xinanjiang Model Applied in China. Journal of Hydrology, 135, 371-381.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article