LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rulev, Yuri A.; Gugkaeva, Zalina T.; Lokutova, Anastasia V.; Maleev, Victor I.; Peregudov, Alexander S.; Wu, Xiao; North, Michael; Belokon, Yuri N.
Languages: English
Types: Article
Subjects: 2304, 1500, 2500, 2100
Carbocation/polyol systems are shown to be highly efficient catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide at 50°C and 5MPa CO2 pressure. The best activity was shown by the combination of crystal violet and 1,1'-bi-2-naphthol (BINOL), which could be recycled five times with no loss of activity. The presence of specific interactions between the amino groups of the carbocation and the hydroxyl protons was confirmed by NMR experiments. The Job plots for the crystal violet iodide/BINOL and brilliant green iodide/BINOL systems showed that the catalytic systems consist of one molecule of the carbocation and one molecule of BINOL. Mechanistic studies using a deuterated epoxide indicate that there was some loss of epoxide stereochemistry during the reaction, but predominant retention of stereochemistry is observed. On this basis, a catalytic cycle is proposed.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article