LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Howard, Mark J.; Smales, C. Mark (2005)
Languages: English
Types: Article
Subjects: QD, QH301
The non-enzymatic reaction between reducing sugars and long-lived proteins in vivo results in the formation of glycation and advanced glycation end products, which alter the properties of proteins including charge, helicity, and their tendency to aggregate. Such protein modifications are linked with various pathologies associated with the general aging process such as Alzheimer disease and the long-term complications of diabetes. Although it has been suggested that glycation and advanced glycation end products altered protein structure and helicity, little structural data and information currently exist on whether or not glycation does indeed influence or change local protein secondary structure. We have addressed this problem using a model helical peptide system containing a di-lysine motif derived from human serum albumin. We have shown that, in the presence of 50 mM glucose and at 37 degrees C, one of the lysine residues in the di-lysine motif within this peptide is preferentially glycated. Using NMR analysis, we have confirmed that the synthetic peptide constituting this helix does indeed form a alpha-helix in solution in the presence of 30% trifluoroethanol. Glycation of the model peptide resulted in the distortion of the alpha-helix, forcing the region of the helix around the site of glycation to adopt a 3(10) helical structure. This is the first reported evidence that glycation can influence or change local protein secondary structure. The implications and biological significance of such structural changes on protein function are discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Lapolla, A., Fedele, D., Plebani, M., Aronica, R., Garbeglio, M., Seraglia, R., Dalpaos, M., and Traldi, P. (1999) Clin. Chem. 45, 288 -290
    • 2. Smales, C. M., Pepper, D. S., and James, D. C. (2002) Biotechnol. Bioeng. 77, 37- 48
    • 3. Smales, C. M., Pepper, D. S., and James, D. C. (2000) Biotechnol. Appl. Biochem. 32, 109 -119
    • 4. Alikhani, Z., Alikhani, M., Boyd, C., Nagao, K., Trackman, P. C., and Graves, D. T. (2005) J. Biol. Chem. 280, 12087-12095
    • 5. Bucala, R. (1996) Diagn. Endocrin. Metab. 14, 99 -106
    • 6. Suarez, G., Rajaram, R., Oronsky, A. L., and Gawinowicz, M. A. (1989) J. Biol. Chem. 264, 3674 -3679
    • 7. Biemel, K. M., Friedl, D. A., and Lederer, M. O. (2002) J. Biol. Chem. 277, 24907-24915
    • 8. Choi, Y.-G., Kim, J.-I., Jeon, Y.-C., Park, S.-J., Choi, E.-K., Rubenstein, R., Kascsak, R. J., Carp, R. I., and Kim, Y.-S. (2004) J. Biol. Chem. 279, 30402-30409
    • 9. Davis, P. J., Smales, C. M., and James, D. C. (2001) Allergy 56, 56 - 60
    • 10. Hanford, L. E., Enghild, J. J., Valnickova, Z., Petersen, S. V., Schaefer, L. M., Schaefer, T. M., Reinhart, T. A., and Oury, T. D. (2004) J. Biol. Chem. 279, 50019 -50024
    • 11. Sell, D. R., and Monnier, V. M. (2004) J. Biol. Chem. 279, 54173-54184
    • 12. Blakytny, R., Carver, J. A., Harding, J. J., Kilby, G. W., and Sheil, M. M. (1997) Biochim. Biophys. Acta 1343, 299 -315
    • 13. Neglia, C., Cohen, H., Garber, A., Thorpe, S., and Baynes, J. (1985) J. Biol. Chem. 260, 5406 -5410
    • 14. Yoon, M. S., Jankowski, V., Montag, S., Zidek, W., Henning, L., Schluter, H., Tepel, M., and Jankowski, J. (2004) Biochem. Biophys. Res. Commun. 323, 377-381
    • 15. Zigrovic, I., Kidric, J., and Horvat, S. (1998) Glycoconj. J. 15, 563-570
    • 16. Shaklai, N., Garlick, R., and Bunn, H. (1984) J. Biol. Chem. 259, 3812-3817
    • 17. Bunk, D. M. (1997) Anal. Chem. 69, 2457-2463
    • 18. Wada, Y. (1996) J. Mass Spectrom. 31, 263-266
    • 19. Zhao, H. R., Smith, J. B., Jiang, X. Y., and Abraham, E. C. (1996) Biochem. Biophys. Res. Commun. 229, 128 -133
    • 20. Munoz, V., and Serrano, L. (1995) J. Mol. Biol. 245, 275-296
    • 21. Munoz, V., and Serrano, L. (1994) Nat. Struct. Biol. 1, 399 - 409
    • 22. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) J. Biomol. NMR 6, 277-293
    • 23. Johnson, B. A., and Blevins, R. A. (1994) J. Biomol. NMR 4, 603- 614
    • 24. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., GrosseKunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 905-921
    • 25. Koradi, R., Billeter, M., and Wuthrich, K. (1996) J. Mol. Graph. 14, 51-55
    • 26. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) J. Biomol. NMR 8, 477- 486
    • 27. van Gunsteren, W. F., Brunne, R. M., Gros, P., van Schaik, R. C., Schiffer, C. A., and Torda, A. E. (1994) Methods Enzymol. 239, 619 - 654
    • 28. Guex, N., and Peitsch, M. C. (1997) Electrophoresis 18, 2714 -2723
    • 29. Rohovec, J., Maschmeyer, T., Aime, S., and Peters, J. A. (2003) Chemistry 9, 2193-2199
    • 30. Cavanagh, J., Fairbrother, W. J., Palmer, A. G., and Skelton, N. J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, Orlando, FL
    • 31. Smales, C. M., Pepper, D. S., and James, D. C. (2000) Biotechnol. Bioeng. 67, 177-188
    • 32. Wishart, D. S., and Sykes, B. D. (1994) Methods Enzymol. 239, 363-392
    • 33. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley Interscience, New York
    • 34. Williamson, R. A., Muskett, F. W., Howard, M. J., Freedman, R. B., and Carr, M. D. (1999) J. Biol. Chem. 274, 37226 -37232
    • 35. Arumugam, S., Gao, G., Patton, B. L., Semenchenko, V., Brew, K., and Van Doren, S. R. (2003) J. Mol. Biol. 327, 719 -734
    • 36. Coussons, P. J., Jacoby, J., McKay, A., Kelly, S. M., Price, N. C., and Hunt, J. V. (1997) Free Radic. Biol. Med. 22, 1217-1227
    • 37. Ahmed, N., Dobler, D., Dean, M., and Thornalley, P. J. (2005) J. Biol. Chem. 280, 5724 -5732
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    1ao6Protein Data Bank

Share - Bookmark

Download from

Cite this article