Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhu, Zongyuan; Rezende, Camila Alves; Simister, Rachael; McQueen-Mason, Simon J.; Macquarrie, Duncan J.; Polikarpov, Igor; Gomez, Leonardo D. (2016)
Languages: English
Types: Article
Subjects: 1107, 2105, 1102, 2311
Sugarcane bagasse represents one of the best potential feedstocks for the production of second generation bioethanol. The most efficient method to produce fermentable sugars is by enzymatic hydrolysis, assisted by thermochemical pretreatments. Previous research was focused on conventional heating pretreatment and the pretreated biomass residue characteristics. In this work, microwave energy is applied to facilitate sodium hydroxide (NaOH) and sulphuric acid (H2SO4) pretreatments on sugarcane bagasse and the efficiency of sugar production was evaluated on the soluble sugars released during pretreatment. The results show that microwave assisted pretreatment was more efficient than conventional heating pretreatment and it gave rise to 4 times higher reducing sugar release by using 5.7 times less pretreatment time. It is highlighted that enrichment of xylose and glucose can be tuned by changing pretreatment media (NaOH/H2SO4) and holding time. SEM study shows significant delignification effect of NaOH pretreatment, suggesting a possible improved enzymatic hydrolysis process. However, severe acid conditions should be avoided (long holding time or high acid concentration) under microwave heating conditions. It led to biomass carbonization, reducing sugar production and forming ‘humins’. Overall, in comparison with conventional pretreatment, microwave assisted pretreatment removed significant amount of hemicellulose and lignin and led to high amount of sugar production during pretreatment process, suggesting microwave heating pretreatment is an effective and efficient pretreatment method.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [7] L. Canilha, V.T.O. Santos, G.J.M. Rocha, J.B.A.E. Silva, M. Giulietti, S.S. Silva, et al., A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid, J. Ind. Microbiol. Biot. 38 (9) (2011) 1467-1475.
    • [8] N. Xu, W. Zhang, S.F. Ren, F. Liu, C.Q. Zhao, H.F. Liao, et al., Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus, Biotechnol. Biofuels 5 (2012) 58.
    • [9] C.A. Rezende, M.A. de Lima, P. Maziero, E.R. de Azevedo, W. Garcia, I. Polikarpov, Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility, Biotechnol. Biofuels 4 (2011) 1-18.
    • [10] Y.-H. Ju, L.-H. Huynh, N.S. Kasim, T.-J. Guo, J.-H. Wang, A.E. Fazary, Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse, Carbohydr. Polym. 83 (2) (2011) 591-599.
    • [11] B. Hong, G.X. Xue, L.Q. Weng, X. Guo, Pretreatment of moso bamboo with dilute phosphoric acid, Bioresources 7 (4) (2012) 4902-4913.
    • [12] J.R. Jensen, J.E. Morinelly, K.R. Gossen, M.J. Brodeur-Campbell, D.R. Shonnard, Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass, Bioresour. Technol. 101 (7) (2010) 2317-2325.
    • [13] A. Mittal, R. Katahira, M.E. Himmel, D.K. Johnson, Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility, Biotechnol. Biofuels 4 (2011) 41.
    • [14] G. Banerjee, S. Car, J.S. Scott-Craig, D.B. Hodge, J.D. Walton, Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose, Biotechnol. Biofuels 4 (2011) 16.
    • [15] D.R. Keshwani, J.J. Cheng, Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production, Biotechnol. Prog. 26 (3) (2010) 644-652.
    • [16] R. Gupta, Y.Y. Lee, Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide, Bioresour. Technol. 101 (21) (2010) 8185-8191.
    • [17] S. Zhu, Y. Wu, Z. Yu, Q. Chen, G. Wu, F. Yu, et al., Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis, Biosyst. Eng. 94 (3) (2006) 437-442.
    • [18] A. Marasabessy, A.M. Kootstra, J. Sanders, R. Weusthuis, Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation, Int. J. Energy Environ. Eng. 3 (1) (2012) 15.
    • [19] D.J. Macquarrie, J.H. Clark, E. Fitzpatrick, The microwave pyrolysis of biomass, Biofuels, Bioprod. Biorefining 6 (5) (2012) 549-560.
    • [20] J.J. Fan, M. De Bruyn, V.L. Budarin, M.J. Gronnow, P.S. Shuttleworth, S. Breeden, et al., Direct microwave-assisted hydrothermal depolymerization of cellulose, J. Am. Chem. Soc. 135 (32) (2013) 11728-11731.
    • [21] M. Lancaster, Green Chemistry : an Introductory Text, Royal Society of Chemistry, Cambridge, 2002.
    • [22] Z. Hu, Z. Wen, Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment, Biochem. Eng. J. 38 (3) (2008) 369-378.
    • [23] S. Nikolić, L. Mojović, M. Rakin, D. Pejin, J. Pejin, Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn, Clean. Techn. Environ. Policy 13 (4) (2011) 587-594.
    • [24] X. Lu, B. Xi, Y. Zhang, I. Angelidaki, Microwave pretreatment of rape straw for (2011) 7937-7940. R bioethanol production: focus on energy efficiency, Bioresour. Technol. 102 (17)
    • [25] W.-H. Chen, S.-C. Ye, H.-K. Sheen, Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environ-
    • [26] L.D. Khuong, R. Kondo, R. De Leon, T. Kim Anh, K. Shimizu, I. KOamei, ment, Appl. Energy 93 (0) (2012) 237-244. Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60, Int. Biodeterior. Biode-
    • [27] M.A. Lima, G.B. Lavorente, H.K.P. da Silva, J. Bragatto, C.A. CRezende, O.D. grad. 88 (2014) 62-68. Bernardinelli, et al., Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production - part 1, Biotechnol. Biofu-
    • [28] H. Rasmussen, H.R. Sørensen, A.S. Meyer, Formation Ndegradation of comels 6 (2013) 75. pounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms, Carbohyd. Res. 385 (0) (2014) 45-57. tion of dilute acid pretreatment of silvergrass Uethanol for production, Bioresour.
    • [29] G.-L. Guo, W.-H. Chen, W.-H. Chen, L.-C. Men, W.-S. Hwang, CharacterizaTechnol. 99 (14) (2008) 6046-6053.
    • [30] C. Vanderghem, A. Richel, N. Jacquet, C. Blecker, M. Paquot, Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins, Polym. Degrad. Stab. 96 (10) (2011) 1761-1770.
    • [31] C. Yin, Microwave-assisted pyrolysis of biomass for liquid biofuels production, Bioresour. Technol. 120 (2012) 273-284.
    • [32] Y. Wu, Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, et al., Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids, Green Chem. 12 (4) (2010) 696-700.
    • [33] V.L. Budarin, Y. Zhao, M.J. Gronnow, P.S. Shuttleworth, S.W. Breeden, D.J. Macquarrie, et al., Microwave-mediated pyrolysis of macro-algae, Green Chem. 13 (9) (2011) 2330-2333.
    • [34] L. Jones, J.L. Milne, D. Ashford, S.J. McQueen-Mason, Cell wall arabinan is 11783-11788. F essential for guard cell function, Proc. Natl. Acad. Sci. U. S. A. 100 (20) (2003) [35] C.E. Foster, T.M. Martin, M. Pauly, Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin, J. Vis. Exp. 37 (2010) [36] C.E. Foster, T.M. Martin, M. Pauly, Comprehensive compositional Oanalysis of e1745. plant cell walls (lignocellulosic biomass) part ii: carbohydrates, J. Vis. Exp. 37 (2010) e1837.
    • [37] H.V. Scheller, P. Ulvskov, Hemicelluloses, Annu. Rev. Plant Biol. 61 (1) (2010) [38] J. Agnieszka Brandt, J. Hallett, T. Welton, Deconstruction Olignocellulosic of 263-289. biomass with ionic liquids, Green Chem. 15 (2012) 550-583.
    • [39] Z. Zhu, R. Simister, S. Bird, S.J. McQueen-Mason, L.D. Gomez, D.J. Macquarbiorefineries, AIMS Bioeng. 2 (4) (2015) 449-R468. rie, Microwave assisted acid and alkali pretreatment of Miscanthus biomass for [40] T.C. Hsu, G.L. Guo, W.H. Chen, W.S. Hwang, Effect of dilute acid pretreatTechnol. 101 (13) (2010) 4907-4913. P ment of rice straw on structural properties and enzymatic hydrolysis, Bioresour.
    • [41] B.S. Dien, H.J.G. Jung, K.P. Vogel, M.D. Casler, J.F.S. Lamb, L. Iten, et al., Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass, Biomass Bioenerg. 30 (10) (2006) 880-891.
    • [42] L. Gómez, R. Vanholme, S. Bird, G. Goeminne, L. Trindade, I. Polikarpov, pretreatments of maize stover, Dmiscanthus and sugarcane bagasse, Bioenerg. et al., Side by side comparison of chemical compounds generated by aqueous Res. 7 (4) (2014) 1466-1480. crowave-enhanced foErmation of glucose from cellulosic waste, Chem. Eng.
    • [43] J. Fan, M. De Bruyn, Z. Zhu, V. Budarin, M. Gronnow, L.D. Gomez, et al., MiProcess. Process Intensif. 71 (0) (2013) 37-42.
    • [44] Y.Y. Lee, P. Iyer, R.W. Torget, Dilute-acid hydrolysis of lignocellulosic bioet al. (Eds.), RTecentProgress in Bioconversion of Lignocellulosics, Springer, mass, in: G.T. Tsao, A.P. Brainard, H.R. Bungay, N.J. Cao, P. Cen, Z. Chen, Berlin Heidelberg, 1999, pp. 93-115.
    • [45] P. Kaparaju, C. Felby, Characterization of lignin during oxidative and hyTechnol. C101(9) (2010) 3175-3181. drothermal pre-treatment processes of wheat straw and corn stover, Bioresour.
    • [46] P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Indus[47] EV.S.Chang, M. Nagwani, C.H. Kim, M.T. Holtzapple, Oxidative lime pretreattrial Eng. Chem. Res. 48 (8) (2009) 3713-3729. ment of high-lignin biomass - poplar wood and newspaper, Appl. Biochem. Biotech. 94 (1) (2001) 1-28.
    • [48] N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, et al., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol. 96 (6) (2005) 673-686.
    • [49] Y. Chen, M.A. Stevens, Y. Zhu, J. Holmes, H. Xu, Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification, Biotechnol. Biofuels 6 (1) (2013) 1-10.
    • [50] S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels 3 (2010) 10.
    • [51] M.-M. Titirici, M. Antonietti, N. Baccile, Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/ hexoses, Green Chem. 10 (11) (2008) 1204-1212.
    • [52] C.F. Liu, F. Xu, J.X. Sun, J.L. Ren, S. Curling, R.C. Sun, et al., Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne), Carbohyd. Res. 341 (16) (2006) 2677-2687.
    • [53] G.L. Guo, D.C. Hsu, W.H. Chen, W.H. Chen, W.S. Hwang, Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition, Enzyme Microb. Tech. 45 (2) (2009) 80-87.
    • [54] C.L. Li, B. Knierim, C. Manisseri, R. Arora, H.V. Scheller, M. Auer, et al., Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification, Bioresour. Technol. 101 (13) (2010) 4900-4906.
    • [55] P. Boonmanumsin, S. Treeboobpha, K. Jeamjumnunja, A. Luengnaruemitchai, T. Chaisuwan, S. Wongkasemjit, Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments, Bioresour. Technol. 103 (1) (2012) 425-431.
    • [56] M.J. Selig, S. Viamajala, S.R. Decker, M.P. Tucker, M.E. Himmel, T.B. Vinzant, Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose, Biotechnol. Progr. 23 (6) (2007) 1333-1339.
    • [57] S. Heiss-Blanquet, D. Zheng, N.L. Ferreira, C. Lapierre, S. Baumberger, Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption, Bioresour. Technol. 102 (10) (2011) 5938-5946.
    • M. Bardet, G. Gerbaud, Q.-K. Trân, S. Hediger, Study of interactions between polyethylene glycol and archaeological wood components by 13C high-resolution solid-state CP-MAS NMR, J. Archaeol. Sci. 34 (10) (2007) 1670-1676.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article