LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gomez Paccard, Miriam; Mcintosh, Greg; Chauvin, Annick; Beamud, Elisabet; Pavon-Carrasco, Francisco,; Thiriot, Jacques (2012)
Publisher: Oxford University Press (OUP)
Languages: English
Types: Article
Subjects: Palaeointensity, Palaeomagnetic secular variation, QC801, Africa, [PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph], Archaeomagnetism, [SDE.MCG] Environmental Sciences/Global Changes, [SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph], Rock and mineral magnetism, África
International audience; New full-vector archaeomagnetic data for North Africa recovered from the study of six kilns, five from Tunisia and one from Morocco, are presented. Archaeological and historical considerations, along with three radiocarbon dates, indicate that the age of the kilns ranges between the 9th and 15th centuries AD. Rock magnetic analyses showed that the principal magnetic carriers are magnetite and low Ti titanomagnetite, along with variable contributions of thermally stable maghemite and a high coercivity phase with low unblocking temperatures. The magnetic mineralogy of the studied material is thermally stable and behaves ideally during archaeointensity experiments. Stepwise alternating field demagnetization isolated a single, stable, characteristic remanence component with very well defined directions at both specimen and structure levels. Mean archaeointensities have been obtained from successful classical Thellier experiments conducted on between five and eight independent samples per kiln. Thermoremanent magnetization (TRM) anisotropy and cooling rate effects upon TRM intensity have been investigated. The results showed that these effects are low for four of the six studied kilns, with differences between the uncorrected and corrected means of less than 3 per cent. For the other two structures differences between the uncorrected and corrected mean site intensities are 4.4 per cent and 5.8 per cent. These results highlight the necessity for TRM anisotropy and cooling rate corrections in archaeomagnetic studies if accurate archaeointensities are to be obtained. The new results suggest that high intensities occurred in Northwest Africa during the 9th century. Although more data are clearly needed to define this period of high intensity, the results are in agreement with the available European archaeointensity data. Acomparison between the newdata, other available archaeomagnetic determinations in nearby locations, and palaeosecular variation (PSV) curves derived from the regional SCHA.DIF.3k and global ARCH3K.1 geomagnetic field models shows good agreement between the new data and directional results derived from the models. However, some differences are observed between geomagnetic field models intensity results and available archaeointensity data for the studied regions. This highlights the need for new data for unexplored regions such as North Africa. The new data presented here better constrains the evolution of the geomagnetic field during historical times in this region. They represent a new step towards the construction of a reference PSV curve for Northwest Africa. Once established, this curve will represent a new dating method for this region.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ben-Yosef, E., Ron, H., Tauxe, L., Agnon, A., Genevey, A., Levy, T.E. & Avner, U., 2008. Application of copper slag in archeointensity research, J. geophys. Res., 113(B8), B08101, doi:10.1029/2007JB005235.
    • Callegarin, L., Kbiri-Alaoui, M., Ichkhakh, A., Darles, C. & Ropiot, V., 2006. Les ope´rations arche´ologiques maroco-franc¸aises de 2004 et 2005 a` Rirha (Sidi Slimane, Maroc), Me´langes de la Casa de Vela´zquez, 36(2), 345-357.
    • Callegarin, L., Kbiri Alaoui, M., Ichkhakh, A. & Roux, J.-Cl., 2011. Le site antique et me´die´val de Rirha (Sidi Slimane, Maroc), Les Nouvelles de l'Arche´ologie, 124, 25-29.
    • Casas, L., Brianso, J.L., Alvarez, A., Benzzi, K. & Shaw, J., 2008. Archaeomagnetic intensity data from the Saadien Tombs (Marrakech, Morocco), late 16th century, Phys. Chem. Earth, 33, 474-480.
    • Catanzariti, G., McIntosh, G., Go´mez-Paccard, M., Ruiz-Mart´ınez, V.C., Osete, M.L., Chauvin, A. & the AARCH Scientific Team, 2008. Quality control of archaeomagnetic determination using a modern kiln with a complex NRM, Phys. Chem. Earth, 33, 427-437.
    • Chauvin, A., Garcia, Y., Lanos, P. & Laubenheimer, F., 2000. Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France, Phys. Earth planet. Inter., 120(1-2), 111-136, doi:10.1016/S0031- 9201(00)00148-5.
    • Coe, R.S., Gromme, S. & Mankinen, E.A., 1984. Geomagnetic paleointensities from excursion sequences in lavas on Oahu, Hawaii, J. geophys. Res, 89, 1059-1069.
    • Coll-Conesa, J., Callegarin, L., Thiriot, J., Fili, A., Kbiri-Alaoui, M. & Ichkhakh, A., 2011. Premie`re approche de l'implantation islamique a` Rirha (Sidi Slimane), Bull. d'Arch. Maroc., 22, in press.
    • Cressier, P. & Rammah, M., 2004. Une autre ville califale: Sabra alMansuˆriya, Cuadernos de Madˆınat al-Zahraˆ', 5, 241-255.
    • Cressier, P. & Rammah, M., 2006. Sabra al-Mansuˆriya (Kairouan, Tunisie): re´sultats pre´liminaires des datations par radio carbone, Me´langes de l'E´cole franc¸aise de Rome. Moyen Aˆge, 118(2), 395-400.
    • Dassi, L., Zouari, K. & Faye, S., 2005. Identifying sources of groundwater recharge in the Merguellil basin (Tunisia) using isotopic methods: implication of dam reservoir water accounting, Environ. Geol., 49, 114-123.
    • Day, R., Fuller, M.D. & Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: grain size and composition dependence, Phys. Earth planet. Inter., 13, 260-267.
    • De Marco, E., Spatharas, V., Gomez-Paccard, M., Chauvin, A. & Kondopoulou, D., 2008. New archaeointensity results from archaeological sites and variation of the geomagnetic field intensity for the last 7 millennia in Greece, Phys. Chem. Earth, 33, 578-595.
    • Donadini, F., Kovacheva, M., Kostadinova, M., Hedley, I.G. & Pesonen, L.J., 2008. Palaeointensity determination on an early medieval kiln from Switzerland and the effect of cooling rate, Phys. Chem. Earth, 33, 449-457.
    • Donadini, F., Korte, M. & Constable, C.G., 2009. Geomagnetic field for 0-3 ka: 1. New data sets for global modeling, Geochem. Geophys. Geosyst., 10(6), Q06007, doi:10.1029/2008GC002295.
    • Donadini, F., Kovacheva, M. & Kostadinova, M., 2010. Archaeomagnetic study of ancient Roman lime kilns (1c. AD) and one pottery kiln (1c. BC - 1c. AD) at Krivina, Bulgaria, as a contribution to archeomagnetic dating, Archeologia Bulgarica, XIV(2), 213-225.
    • Evans, M.E., 1986. Paleointensity estimates from Italian kilns, J. Geomag. Geoelector., 38, 1259-1267.
    • Evans, M.E. & Hoye, G.S., 2005. Archaeomagnetic results from southern Italy and their bearing on geomagnetic secular variation, Phys. Earth planet. Inter., 151, 155-162.
    • Evans, M.E. & Mareschal, M., 1987. Secular variation and magnetic dating of fired structures in southern Italy, in Proceedings of the 25th International Symposium in Archaeometry, ed. Maniatis Y., Elsevier, Amsterdam.
    • Fisher, R.A., 1953. Dispersion on a sphere, Proc. R. Soc. 217, 295- 305.
    • Gallet, Y., Genevey, A., Le Goff, M., Warme´, N., Gran-Aymerich, J. & Lefe`vre, A., 2009. On the use of archeology in geomagnetism, and vice-versa: recent developments in archeomagnetism, C. R. Phys., 10(7), 630-648.
    • Gehring, A.U., Fischer, H., Louvel, M., Kunze, K. & Weidler, P.G., 2009. High temperature stability of natural maghemite: a magnetic and spectroscopic study, Geophys. J. Int., 179, 1361-1371.
    • Gendler, T.S., Shcherbakov, V.P., Dekkers, M.J., Gapeev, A.K., Gribov, S.K. & McClelland, E., 2005. The lepidocrocite-maghemite-haematite reaction chain-I. Acquisition of chemical remanent magnetisation by maghemite, its magnetic properties and thermal stability, Geophys J. Int., 160, 815-832.
    • Genevey, A. & Gallet, Y., 2002. Intensity of the geomagnetic field in western Europe over the past 2000 years: new data from ancient French pottery, J. geophys. Res., 107(B11), 2285, doi:10.1029/2001JB000701.
    • Genevey, A., Gallet, Y., Constable, C.G., Korte, M. & Hulot, G., 2008. ArcheoInt: an upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment, Geochem. Geophys. Geosyst., 9(4), Q04038, doi:10.1029/2007GC001881.
    • Genevey, A., Gallet, Y., Rosen, J. & Le Goff, M., 2009. Evidence for rapid geomagnetic field intensity variations in Western Europe over the past 800 years from new French archeointenisity data, Earth planet. Sci. Lett., 284, 132-143.
    • Go´mez-Paccard, M., Chauvin, A., Lanos, P., Thiriot, J. & Jime´nezCastillo, P., 2006a. Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain), Phys. Earth planet. Inter., 157(1-2), 16-32, doi:10.1016/j.pepi.2006.03.001.
    • Go´mez-Paccard, M., Chauvin, A., Lanos, P., McIntosh, G., Osete, M.L., Catanzariti, G., Ruiz-Mart´ınez, V.C. & Nu´n˜ez, J.I., 2006b. First archaeomagnetic secular variation curve for the Iberian Peninsula: comparison with other data from western Europe and with global geomagnetic field models, Geochem. Geophys. Geosyst., 7, Q12001, doi:10.1029/2006GC001476.
    • Go´mez-Paccard, M. et al. 2006c. A catalogue of Spanish archaeomagnetic data, Geophys. J. Int., 166, 1125-1143, doi:10.1111/j.1365- 246X.2006.03020.x.
    • Go´mez-Paccard, M., Chauvin, A., Lanos, P. & Thiriot, J., 2008. New archeointensity data from Spain and the geomagnetic dipole moment in western Europe over the past 2000 years, J. geophys. Res., 113(B9), B09103, doi:10.1029/2008JB005582.
    • Hartmann, G.A., Trindade, R.I.F., Goguitchaichvili, A., Etchevarne, C., Morales, J. & Afonso, M.C., 2009. First archeointensity results from Portuguese potteries (1550-1750 AD), Earth Planets Space, 61(1), 93-100.
    • Herries, A.I.R., Kovacheva, M. & Kostadinova, M., 2008. Mineral magnetism and archaeomagnetic dating of a mediaeval oven from Zlatna Livada, Bulgaria, Phys. Chem. Earth, 33(6-7), 496- 510.
    • Iassanov, P.G., Nurgaliev, D.K., Burov, D.V. & Heller, F., 1998. A modernized coercivity spectrometer, Geologica Carpathica, 49(3), 224- 226.
    • Jordanova, N., Petrovsky, E. & Kovacheva, M., 1997. Preliminary rock magnetic study of archeomagnetic samples from Bulgarian prehistoric sites, J. Geomagn. Geoelectr., 49, 543-566.
    • Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. R. astron. Soc., 62, 699- 718.
    • Korte, M., Donadini, F. & Constable, C.G., 2009. Geomagnetic field for 0-3 ka: 2. A new series of time-varying global models, Geochem. Geophys. Geosyst., 10(6), Q06008, doi:10.1029/2008GC002297.
    • Kovacheva, M., 1984. Some archaeomagnetic conclusions from three archaeological localities in north-west Africa, C. R. Acad. Sci. Bulgaria, 37, 171-174.
    • Kovacheva, M., Boyadziev, Y., Kostadinova-Avramova, M., Jordanova, N. & Donadini, F., 2009a. Updated archeomagnetic data set of the past 8 millennia from the Sofia laboratory, Bulgaria, Geochem., Geophys., Geosyst., 10, Q05002, doi:10.1029/2008GC002347.
    • Kovacheva, M., Chauvin, A., Jordanova, N., Lanos, P. & Karloukovski, V., 2009b. Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery, Earth Planets Space, 61, 711-732.
    • Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 17, 159-162.
    • Ma´rton, P., 2009. Prehistorical archaeomagnetic directions from Hungary in comparison with those from south-eastern Europe, Earth Planets Space, 61(12), 1351-1356.
    • Ma´rton, P., 2010. Two thousand years of geomagnetic field direction over central Europe revealed by indirect measurements, Geophys. J. Int., 181(1), 261-268.
    • Ma´rton, P., Abdeldayem, D., Tarling, D.H., Nardi, G. & Pierattini, D., 1992. Archaeomagnetic study of two kilns at Segesta, Sicily, Sci. Tech. Cultural Heritage, I, 123-127.
    • Maury, R.C. et al., 2000. Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff, C. R. Acad. Sci. Ser. IIa Sci Terre Planetes, 331, 159-173.
    • McIntosh, G., Kovacheva, M., Catanzariti, G., Osete, M.L. & Casas, L., 2007. Widespread occurrence of a novel high coercivity, thermally stable, low unblocking temperature magnetic phase in heated archeological material, Geophys. Res. Lett., 34, L21302, doi:10.1029/2007GL031168.
    • McIntosh, G., Kovacheva, M., Catanzariti, G., Donadini, F. & Osete, M.L., 2011. High coercivity remanence in baked clay materials used in archeomagnetism, Geochem. Geophys. Geosyst., 12, Q02003, doi:10.1029/10.1029/2010GC003310.
    • Nachasova, I.E. & Burakov, K.S., 2009. Variation of the intensity of the Earth's magnetic field in Portugal in the 1st millenium BC, Phys. Solid Earth, 45, 54-62.
    • Najid, D., 1986. Palaeomagnetic studies in Morocco, PhD thesis,. University of Newcastle upon Tyne.
    • Odah, H., Heider, F., Hussain, A.G., Hoffmann, V., Soffel, H. & Elgamili, M., 1995. Paleointensity of the geomagnetic field in Egypt from 4000BC to 150AD using the Thellier method, J. Geomagn. Geoelectr., 47(1), 41-58.
    • O¨zdemir, O¨. & Banerjee, S.K., 1984. High temperature stability of maghemite (γ -Fe203), Geophys. Res. Lett., 11, 161-164, doi:101.1029/GL011i003p00161.
    • Pavo´n-Carrasco, F.J., Osete, M.L., Torta, J.M. & Gaya-Pique´, L.R., 2009. A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archeomagnetic dating, Geochem. Geophys. Geosyst, 10(3), Q03013, doi:10.1029/2008GC002244.
    • Peters, C., Abrahamsen, N., Voss, O., Batt, C.M. & McDonnell, G., 2008. Magnetic investigations of iron age slags at Yderik, Denmark: mineral magnetic comparison to UK slags, Phys. Chem. Earth, 33(6-7), 465- 473.
    • Pick, T. & Tauxe, L., 1993. Holocene paleointensities: thellier experiments on submarine basaltic glass from the East Pacific Rise, J. geophys. Res., 98(B10), 17 949-17 964.
    • Pre´vot, M., Mankinen, E.A., Coe, R.S. & Grome´, C.S., 1985. The Steens Mountain (Oregon) geomagnetic polarity transition. 2. Field intensity variations and discussion of reversal models, J. geophys. Res., 90, 10 417-10 448.
    • Ruiz-Martinez, V.C., Pavon-Carrasco, F.J. & Catanzariti, G., 2008. First archaeomagnetic data from northern Iberia, Phys. Chem. Earth, 33(6-7), 566-577.
    • Sapin, C., Bayle´, M., Bu¨ttner, S., Guibert, P. & Blain, S., 2008. Arche´ologie du baˆti et arche´ome´trie au Mont-Saint-Michel, nouvelles approches de Notre-Dame-Sous-Terre, Arche´ologie Me´die´vale, 38, 71- 122.
    • Schnepp, E. & Lanos, P., 2005. Archaeomagnetic secular variation in Germany during the past 2500 years, Geophys. J. Int., 163, 479- 490.
    • Schnepp, E., Lanos, P. & Chauvin, A., 2009. Geomagnetic paleointensity between 1300 and 1750 AD derived from a bread oven floor sequence in Lubeck, Germany, Geochem. Geophys. Geosyst., 10(8), Q08003, doi:10.1029/2009GC002470.
    • Spassov, S. & Hus, J., 2006. Estimating baking temperatures in a Roman pottery kiln by rock magnetic properties: implications of thermochemical alteration on archaeointensity determinations, Geophys. J. Int., 167, 592-604.
    • Suteu, C.A., Batt, C.M. & Zananiri, I., 2008. New developments in archaeomagnetic dating for Romania-A progress report on recent directional studies, Phys. Chem. Earth, 33(6-7), 557-565.
    • Tanguy, J.C., Le Goff, M., Pr´ıncipe, C., Arrighi, S., Chillemi, V., Paiotti, A., La Delfa, S. & Patane`, G., 2003. Archaeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits, Earth planet Sci. Lett., 211, 111-124.
    • Tauxe, L., 1998. Modern approaches in geophysics, in Paleomagnetic Principles and Practice, Vol. 17, Kluwer Academic, Dordrecht.
    • Tema, E., Hedley, I. & Lanos, P., 2006. Archaeomagnetism in Italy: a compilation of data including new results and a preliminary Italy secular variation curve, Geophys. J. Int., 167(3), 1160-1171, doi:10.1111/j.1365- 246X.2006.03150.x.
    • Tema, E. & Lanza, R., 2008. Archaeomagnetic study of a lime kiln at Bazzano (northern Italy), Phys. Chem. Earth, 33(6-7), 534- 543.
    • Tema, E., Goguitchaichvili, A. & Camps, P., 2010. Archaeointensity determinations from Italy: new data and the Earth's magnetic field strength variation over the past three millennia, Geophys. J. Int., 180(2), 596-608.
    • Thellier, E. & Thellier, O., 1959. Sur l'intensite´ du champ magne´tique terrestre dans le passe´ historique et ge´ologique, Ann. Ge´ophys., 15, 285- 376.
    • Thiriot, J., 2009. Les structures de cuisson de l'atelier de potiers du “palais” de Sabra al-Mansuˆriya (Kairouan, Tunisie), in Actas del VIII Congreso Internacional de Cera´mica Medieval en el Mediterra´neo., Vol. 2, pp. 685-695, eds Zozaya, J., Retuerce, M., Herva´s, M.A´ . & De Juan, A., Ciudad Real, 2006 February 27-March 3.
    • Table S2. Archaeointensity data for the last two millennia compiled within a restricted region of 800 km of radius around Rirha.
    • Table S3. Archaeomagnetic directional data for the last two millennia compiled within a restricted region of 800 km of radius around Sabra al-Mannsuriya.
    • Table S4. Archaeointensity data for the last two millennia com-
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.