LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nasir, Fahad; Bolton, James S.; Becker, George D. (2016)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: Astrophysics - Cosmology and Nongalactic Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics
We use cosmological hydrodynamical simulations to assess the feasibility of constraining the thermal history of the intergalactic medium during reionisation with the Ly$\alpha$ forest at $z\simeq5$. The integrated thermal history has a measureable impact on the transmitted flux power spectrum that can be isolated from Doppler broadening at this redshift. We parameterise this using the cumulative energy per proton, $u_0$, deposited into a gas parcel at the mean background density, a quantity that is tightly linked with the gas density power spectrum in the simulations. We construct mock observations of the line of sight Ly$\alpha$ forest power spectrum and use a Markov Chain Monte Carlo approach to recover $u_{0}$ at redshifts $5 \leq z \leq 12$. A statistical uncertainty of $\sim 20$ per cent is expected (at 68 per cent confidence) at $z\simeq 5$ using high resolution spectra with a total redshift path length of $\Delta z=4$ and a typical signal-to-noise ratio of $\rm S/N=15$ per pixel. Estimates for the expected systematic uncertainties are comparable, such that existing data should enable a measurement of $u_0$ to within $\sim 30$ per cent. This translates to distinguishing between reionisation scenarios with similar instantaneous temperatures at $z\simeq 5$, but with an energy deposited per proton that differs by $2$-$3\, \rm eV$ over the redshift interval $5\leq z \leq 12$. For an initial temperature of $T\sim 10^{4}\rm\,K$ following reionisation, this corresponds to the difference between early ($z_{\rm re}=12$) and late ($z_{\rm re}=7$) reionisation in our models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Becker G. D., Bolton J. S., 2013, MNRAS, 436, 1023
    • Becker G. D., Bolton J. S., Haehnelt M. G., Sargent W. L. W., 2011, MNRAS, 410, 1096
    • Becker G. D., Hewett P. C., Worseck G., Prochaska J. X., 2013, MNRAS, 430, 2067
    • Becker G. D., Bolton J. S., Lidz A., 2015a, Publ. Astron. Soc. Australia, 32, 045
    • Becker G. D., Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Venemans B. P., 2015b, MNRAS, 447, 3402
    • Bi H. G., Boerner G., Chu Y., 1992, A&A, 266, 1
    • Boera E., Murphy M. T., Becker G. D., Bolton J. S., 2014, MNRAS, 441, 1916
    • Boera E., Murphy M. T., Becker G. D., Bolton J. S., 2016, MNRAS, 456, L79
    • Bolton J. S., Becker G. D., 2009, MNRAS, 398, L26
    • Bolton J. S., Haehnelt M. G., 2007, MNRAS, 374, 493
    • Bolton J. S., Viel M., Kim T.-S., Haehnelt M. G., Carswell R. F., 2008, MNRAS, 386, 1131
    • Bolton J. S., Becker G. D., Raskutti S., Wyithe J. S. B., Haehnelt M. G., Sargent W. L. W., 2012, MNRAS, 419, 2880
    • Bolton J. S., Becker G. D., Haehnelt M. G., Viel M., 2014, MNRAS, 438, 2499
    • Bouwens R. J., Illingworth G. D., Oesch P. A., Caruana J., Holwerda B., Smit R., Wilkins S., 2015, ApJ, 811, 140
    • Calura F., Tescari E., D'Odorico V., Viel M., Cristiani S., Kim T.-S., Bolton J. S., 2012, MNRAS, 422, 3019
    • Cen R., McDonald P., Trac H., Loeb A., 2009, ApJ, 706, L164
    • Chardin J., Haehnelt M. G., Aubert D., Puchwein E., 2015, MNRAS, 453, 2943
    • Compostella M., Cantalupo S., Porciani C., 2014, MNRAS, 445, 4186
    • Croft R. A. C., Weinberg D. H., Bolte M., Burles S., Hernquist L., Katz N., Kirkman D., Tytler D., 2002, ApJ, 581, 20
    • D' Aloisio A., McQuinn M., Trac H., 2015, ApJ, 813, L38
    • Davies F. B., Furlanetto S. R., 2015, preprint (arXiv:1509.07131)
    • Dijkstra M., Lidz A., Hui L., 2004, ApJ, 605, 7
    • Eisenstein D. J., Hu W., 1999, ApJ, 511, 5
    • Fan X., et al., 2006, AJ, 132, 117
    • Faucher-Gigu`ere C.-A., Prochaska J. X., Lidz A., Hernquist L., Zaldarriaga M., 2008, ApJ, 681, 831
    • Faucher-Gigu`ere C., Lidz A., Zaldarriaga M., Hernquist L., 2009, ApJ, 703, 1416
    • Finlator K., Oh S. P., O¨ zel F., Dav´e R., 2012, MNRAS, 427, 2464
    • Furlanetto S. R., Oh S. P., 2009, ApJ, 701, 94
    • Furlanetto S. R., McQuinn M., Hernquist L., 2006, MNRAS, 365, 115
    • Garzilli A., Bolton J. S., Kim T.-S., Leach S., Viel M., 2012, MNRAS, 424, 1723
    • Garzilli A., Theuns T., Schaye J., 2015, MNRAS, 450, 1465
    • Gnedin N. Y., 2014, ApJ, 793, 29
    • Gnedin N. Y., Hui L., 1998, MNRAS, 296, 44
    • Greig B., Bolton J. S., Wyithe J. S. B., 2015, MNRAS, 447, 2503
    • Haardt F., Madau P., 2001, in Clusters of Galaxies and the High Redshift Universe Observed in X-rays, Neumann, D. M. & Tran, J. T. V. ed., astro-ph/0106018.
    • Haardt F., Madau P., 2012, ApJ, 746, 125
    • Haehnelt M. G., Steinmetz M., 1998, MNRAS, 298, L21
    • Hui L., Gnedin N. Y., 1997, MNRAS, 292, 27
    • Hui L., Haiman Z., 2003, ApJ, 596, 9
    • Hui L., Rutledge R. E., 1999, ApJ, 517, 541
    • Irˇsiˇc V., Viel M., 2014, J. Cosmology Astropart. Phys., 12, 024
    • Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
    • Kulkarni G., Hennawi J. F., On˜orbe J., Rorai A., Springel V., 2015, ApJ, 812, 30
    • Lai K., Lidz A., Hernquist L., Zaldarriaga M., 2006, ApJ, 644, 61
    • Lee K.-G., et al., 2015, ApJ, 799, 196
    • Lidz A., Malloy M., 2014, ApJ, 788, 175
    • Lidz A., Heitmann K., Hui L., Habib S., Rauch M., Sargent W. L. W., 2006, ApJ, 638, 27
    • Lidz A., Faucher-Gigu`ere C.-A., Dall'Aglio A., McQuinn M., Fechner C., Zaldarriaga M., Hernquist L., Dutta S., 2010, ApJ, 718, 199
    • Luki´c Z., Stark C. W., Nugent P., White M., Meiksin A. A., Almgren A., 2015, MNRAS, 446, 3697
    • Maiolino R., et al., 2013, preprint (arXiv:1310.3163)
    • McDonald P., Miralda-Escud´e J., Rauch M., Sargent W. L. W., Barlow T. A., Cen R., 2001, ApJ, 562, 52
    • McDonald P., et al., 2006, ApJS, 163, 80
    • McQuinn M., Upton Sanderbeck P. R., 2016, MNRAS, 456, 47
    • McQuinn M., Lidz A., Zaldarriaga M., Hernquist L., Hopkins P. F., Dutta S., Faucher-Gigu`ere C.-A., 2009, ApJ, 694, 842
    • McQuinn M., Hernquist L., Lidz A., Zaldarriaga M., 2011, MNRAS, 415, 977
    • Meiksin A., 2000, MNRAS, 314, 566
    • Miralda-Escud´e J., Rees M. J., 1994, MNRAS, 266, 343
    • Mitra S., Choudhury T. R., Ferrara A., 2015, MNRAS, 454, L76
    • Norman M. L., Reynolds D. R., So G. C., Harkness R. P., Wise J. H., 2015, ApJS, 216, 16
    • Olive K. A., Skillman E. D., 2004, ApJ, 617, 29
    • Palanque-Delabrouille N., et al., 2015, J. Cosmology Astropart. Phys., 11, 011
    • Park H., Shapiro P. R., Choi J.-h., Yoshida N., Hirano S., Ahn K., 2016, preprint (arXiv:1602.06472)
    • Pawlik A. H., Schaye J., van Scherpenzeel E., 2009, MNRAS, 394, 1812
    • Pawlik A. H., Schaye J., Vecchia C. D., 2015, MNRAS, 451, 1586
    • Peeples M. S., Weinberg D. H., Dav´e R., Fardal M. A., Katz N., 2010, MNRAS, 404, 1281
    • Planck Collaboration et al., 2015, preprint (arXiv:1502.01589)
    • Planck Collaboration et al., 2016, preprint (arXiv:1605.03507)
    • Puchwein E., Bolton J. S., Haehnelt M. G., Madau P., Becker G. D., Haardt F., 2015, MNRAS, 450, 4081
    • Raskutti S., Bolton J. S., Wyithe J. S. B., Becker G. D., 2012, MNRAS, 421, 1969
    • Ricotti M., Gnedin N. Y., Shull J. M., 2000, ApJ, 534, 41
    • Robertson B. E., Ellis R. S., Furlanetto S. R., Dunlop J. S., 2015, ApJ, 802, L19
    • Rollinde E., Theuns T., Schaye J., Pˆaris I., Petitjean P., 2013, MNRAS, 428, 540
    • Rorai A., Hennawi J. F., White M., 2013, ApJ, 775, 81
    • Rudie G. C., Steidel C. C., Pettini M., 2012, ApJ, 757, L30
    • Schaye J., 2001, ApJ, 559, 507
    • Schaye J., Theuns T., Leonard A., Efstathiou G., 1999, MNRAS, 310, 57
    • Schaye J., Theuns T., Rauch M., Efstathiou G., Sargent W. L. W., 2000, MNRAS, 318, 817
    • Springel V., 2005, MNRAS, 364, 1105
    • Springel V., et al., 2005, Nature, 435, 629
    • Theuns T., Zaroubi S., 2000, MNRAS, 317, 989
    • Theuns T., Schaye J., Haehnelt M. G., 2000, MNRAS, 315, 600
    • Theuns T., Schaye J., Zaroubi S., Kim T.-S., Tzanavaris P., Carswell B., 2002, ApJ, 567, L103
    • Trac H., Cen R., Loeb A., 2008, ApJ, 689, L81
    • Upton Sanderbeck P. R., D'Aloisio A., McQuinn M. J., 2015, preprint (arXiv:1511.05992)
    • Verner D. A., Ferland G. J., 1996, ApJS, 103, 467
    • Viel M., Haehnelt M. G., Springel V., 2004, MNRAS, 354, 684
    • Viel M., Bolton J. S., Haehnelt M. G., 2009, MNRAS, 399, L39
    • Viel M., Becker G. D., Bolton J. S., Haehnelt M. G., 2013a, Phys. Rev. D, 88, 043502
    • Viel M., Schaye J., Booth C. M., 2013b, MNRAS, 429, 1734
    • Wyithe J. S. B., Loeb A., 2004, Nature, 432, 194
    • Zaldarriaga M., 2002, ApJ, 564, 153
    • Zaldarriaga M., Hui L., Tegmark M., 2001, ApJ, 557, 519
    • Zaroubi S., Viel M., Nusser A., Haehnelt M., Kim T.-S., 2006, MNRAS, 369, 734
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Related to

  • egiEGI virtual organizations: planck

Cite this article