Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Q.; Liu, X.; Lu, X.; Cao, J.; Tang, Wen (2015)
Publisher: Springer
Languages: English
Types: Unknown

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
Based on the fnite element method, we present a simple volume-preserved thin shell deformation algorithm to simulate the process of inflating a balloon. Diff erent from other thin shells, the material of balloons has special features: large stretch, small bend and shear, and incompressibility. Previous deformation methods often focus on typical three-dimensional models or thin plate models such as cloth model. The rest thin shell methods are complex or ignore the special features of thin shells especially balloons. We modify the triangle element to simple three-prism element, ignore bending and shearing deformation, and use volume preservation algorithm to match the incompressibility of balloons. Simple gas model is used, which interacts with shells to make the balloons inflated. Di different balloon examples have been tested in our experiments and the results are compared with those of other methods. The experiments show that our algorithm is simple and effective.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Bonet, J., Wood, R.D., Mahaney, J., et al.: Finite element analysis of air supported membrane structures[J]. Computer Methods in Applied Mechanics & Engineering, 2000, 190(5-7):579595.
    • 2. Platt, J., Fleischer, K., Terzopoulos, D., et al.: Elastically Deformable Models[J]. Computer Graphics, 1987, 21(4).
    • 3. Provot X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior[J]. In Graphics Interface, 1995:147{154.
    • 4. Desbrun, M., Schroder, P., Barr, A.: Interactive animation of structured deformable objects[C]//Graphics Interface. 1999, 99(5): 10.
    • 5. James, D.L., Pai, D.K.: ArtDefo: accurate real time deformable objects[C]//Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1999: 65-72.
    • 6. O'brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture[C]//Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1999: 137-146.
    • 7. Gibson, S.F.F., Mirtich, B.: A survey of deformable modeling in computer graphics[R]. Tech. rep., Mitsubishi Electric Research Laboratories, 1997.
    • 8. Nealen, A., Muller, M., Keiser, R., et al.: Physically based deformable models in computer graphics[C]//Computer Graphics Forum. Blackwell Publishing Ltd, 2006, 25(4): 809-836.
    • 9. Eischen, J.W., Deng, S., Clapp, T.G.: Finite-element modeling and control of exible fabric parts[J]. IEEE Computer Graphics and Applications, 1996, 16(5): 71-80.
    • 10. Jannski, L., Ulbricht, V.: Numerical simulation of mechanical behaviour of textile surfaces[J]. ZAMMJournal of Applied Mathematics and Mechanics/Zeitschrift fr Angewandte Mathematik und Mechanik, 2000, 80(S2): 525-526.
    • 11. Muller, M., Dorsey, J., McMillan, L., et al.: Stable real-time deformations[C]//Proceedings of the 2002 ACM SIGGRAPH/ Eurographics symposium on Computer animation. ACM, 2002: 49-54.
    • 12. Etzmu , O., Keckeisen, M., Stra er, W.: A fast nite element solution for cloth modelling[C]//Computer Graphics and Applications, 2003. Proceedings. 11th Paci c Conference on. IEEE, 2003: 244-251.
    • 13. McAdams, A., Zhu, Y., Selle, A., et al.: E cient elasticity for character skinning with contact and collisions[C]//ACM Transactions on Graphics (TOG). ACM, 2011, 30(4): 37.
    • 14. Arnold, D.: Questions on shell theory[C]//Workshop on Elastic Shells: Modeling, Analysis, and Computation. 2000.
    • 15. Cirak, F., Scott, M.J., Antonsson, E.K., et al.: Integrated modeling, nite-element analysis, and engineering design for thin-shell structures using subdivision[J]. Computer-Aided Design, 2002, 34(2): 137-148.
    • 16. Green, S., Turkiyyah, G., Storti, D.: Subdivision-based multilevel methods for large scale engineering simulation of thin shells[C]//Proceedings of the seventh ACM symposium on Solid modeling and applications. ACM, 2002: 265-272.
    • 17. Grinspun, E., Krysl, P., Schroder, P.: CHARMS: a simple framework for adaptive simulation[C]//ACM transactions on graphics (TOG). ACM, 2002, 21(3): 281-290.
    • 18. Grinspun, E., Hirani, A.N., Desbrun, M., et al.: Discrete shells[C]//Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2003: 62-67.
    • 19. Skouras, M., Thomaszewski, B., Bickel, B., et al.: Computational design of rubber balloons[C]//Computer Graphics Forum. Blackwell Publishing Ltd, 2012, 31(2pt4): 835-844.
    • 20. Guendelman, E., Selle, A., Losasso, F., et al.: Coupling water and smoke to thin deformable and rigid shells[J]. ACM Transactions on Graphics (TOG), 2005, 24(3): 973-981.
    • 21. Robinson-Mosher, A., Shinar, T., Gretarsson, J., et al.: Two-way coupling of uids to rigid and deformable solids and shells[C]//ACM Transactions on Graphics (TOG). ACM, 2008, 27(3): 46.
    • 22. Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate soliduid coupling[J]. ACM Transactions on Graphics (TOG), 2007, 26(3): 100.
    • 23. Chen, Z., Feng, R., Wang, H.: Modeling friction and air e ects between cloth and deformable bodies[J]. Acm Transactions on Graphics, 2013, 32(4):96-96.
    • 24. Muller, M., Keiser, R., Nealen, A., et al.: Point based animation of elastic, plastic and melting objects[C]//Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2004: 141-151.
    • 25. Bargteil, A.W., Wojtan, C., Hodgins, J.K., et al.: A nite element method for animating large viscoplastic ow[J]. ACM transactions on graphics (TOG), 2007, 26(3): 16.
    • 26. Irving, G., Schroeder, C., Fedkiw, R.: Volume conserving nite element simulations of deformable models[J]. Acm Transactions on Graphics, 2007, 26(3).
    • 27. Hong, M., Jung, S., Choi, M.H., et al.: Fast volume preservation for a mass-spring system[J]. IEEE Computer Graphics and Applications, 2006, 26(5): 83-91.
    • 28. Muller, M., Heidelberger, B., Hennix, M., et al.: Position based dynamics[J]. Journal of Visual Communication and Image Representation, 2007, 18(2): 109-118.
    • 29. Muller, M.: Hierarchical position based dynamics[J]. 2008.
    • 30. Diziol R, Bender J, Bayer D. Robust real-time deformation of incompressible surface meshes[C]//Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 2011: 237-246.
    • 31. Bara , D., Witkin, A.: Large steps in cloth simulation[C]//Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM, 1998: 43-54.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article