LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ewing, S. J.; Vaqueiro, P. (2015)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:
The synthesis and characterization of five new indium selenides, [C9H17N2]3[In5Se8+x(Se2)1−x] (1–2), [C6H12N2]4[C6H14N2]3[In10Se15(Se2)3] (3), [C6H14N2][(C6H12N2)2NaIn5Se9] (4) and [enH2][NH4][In7Se12] (5), are described. These materials were prepared under solvothermal conditions, using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as structure-directing agents. Compounds 1–4 represent the first examples of ribbons in indium selenides, and 4 is the first example of incorporation of an alkali metal complex. Compounds 1, 2 and 4 contain closely related [In5Se8+x(Se2)1−x]3− ribbons which differ only in their content of (Se2)2− anions. These ribbons are interspaced by organic countercations in 1 and 2, while in 4 they are linked by highly unusual [Na(DABCO)2]+ units into a three-dimensional framework. Compound 3 contains complex ribbons, with a long repeating sequence of ca. 36 Å, and 4 is a non-centrosymmetric three-dimensional framework, formed as a consequence of the decomposition of DABCO into ethylenediamine (en) and ammonia.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 (a) N. Zheng, X. Bu, H. Vu and P. Feng, Angew. Chem., Int. Ed., 2005, 44, 5299; (b) Z. Zhang, J. Zhang, T. Wu, X. Bu and P. Feng, J. Am. Chem. Soc., 2008, 130, 15238.
    • 2 N. Zheng, X. Bu and P. Feng, Nature, 2003, 426, 428.
    • 3 M. J. Manos, C. D. Malliakas and M. G. Kanatzidis, Chem. - Eur. J., 2007, 13, 51.
    • 4 Q. Zhang, I. Chung, J. I. Jang, J. B. Ketterson and M. G. Kanatzidis, Chem. Mater., 2009, 21, 12.
    • 5 (a) P. Feng, X. Bu and N. Zheng, Acc. Chem. Res., 2005, 38, 293; (b) X. Bu, N. Zheng and P. Feng, Chem. - Eur. J., 2004, 10, 3356; (c) L. Wang, T. Wu, X. Bu, X. Zhao, F. Zuo and P. Feng, Inorg. Chem., 2013, 52, 2259; (d) T. Wu, X. Bu, P. Liao, L. Wang, S.-T. Zheng, R. Ma and P. Feng, J. Am. Chem. Soc., 2012, 134, 3619; (e) T. Wu, F. Zuo, L. Wang, X. Bu, S.-T. Zheng, R. Ma and P. Feng, J. Am. Chem. Soc., 2011, 133, 15886.
    • 6 S. J. Ewing, A. V. Powell and P. Vaqueiro, Inorg. Chem., 2012, 51, 7404.
    • 7 C. Wang, X. Bu, N. Zheng and P. Feng, Chem. Commun., 2002, 1344.
    • 8 S. J. Ewing, D. I. Woodward, A. V. Powell and P. Vaqueiro, J. Solid State Chem., 2013, 204, 159.
    • 9 C. Wang, X. Bu, N. Zheng and P. Feng, Angew. Chem., Int. Ed., 2002, 41, 1959.
    • 10 P. Vaqueiro, Inorg. Chem., 2008, 47, 20.
    • 11 K.-Z. Du, W.-B. Hu, B. Hu, X.-F. Guan and X.-Y. Huang, Mater. Res. Bull., 2011, 46, 1969.
    • 12 (a) S. J. Ewing, A. V. Powell and P. Vaqueiro, J. Solid State Chem., 2011, 184, 1800; (b) X. Zhang, Z.-X. Lei, W. Luo, W.-Q. Mu, X. Zhang, Q.-Y. Zhu and J. Dai, Inorg. Chem., 2011, 50, 10872; (c) H. G. Yao, M. Ji, S.-H. Ji and Y. L. An, Z. Anorg. Allg. Chem., 2012, 638, 683.
    • 13 C. L. Cahill and P. C. Burns, Inorg. Chem., 2001, 40, 1347.
    • 14 L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786.
    • 15 G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.
    • 16 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, J. Appl. Crystallogr., 2003, 36, 1487.
    • 17 TOPAS, Version 3, Bruker-AXS Inc, Madison, Wisconsin, USA, 1999.
    • 18 W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Interscience publishers, New York, 1966.
    • 19 W. S. Sheldrick and H. G. Braunbeck, Z. Naturforsch., B: Chem. Sci., 1989, 44, 1397.
    • 20 W.-W. Xiong, J.-R. Li, M.-L. Feng and X.-Y. Huang, CrystEngComm, 2011, 13, 6206.
    • 21 H. Foeppl, E. Busmann and F. K. Frorath, Z. Anorg. Allg. Chem., 1962, 314, 12.
    • 22 D. Fischer and M. Jansen, Angew. Chem., Int. Ed., 2002, 41, 1755.
    • 23 (a) S. Chadwick and K. Ruhlandt-Senge, Chem. - Eur. J., 1998, 4, 1768; (b) U. Englich and K. Ruhlandt-Senge, Coord. Chem. Rev., 2000, 210, 135.
    • 24 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
    • 25 D. A. Guzonas and D. E. Irish, Can. J. Chem., 1988, 66, 1249.
    • 26 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, Wiley Interscience Publication, USA, 5th edn, 1997, p. 189.
    • 27 A. V. Powell, R. J. E. Lees and A. M. Chippindale, J. Phys.: Chem. Solids, 2008, 69, 1000.
    • 28 S. J. Ewing, M. L. Romero, J. Hutchinson, A. V. Powell and P. Vaqueiro, Z. Anorg. Allg. Chem., 2012, 638, 2526.
    • 29 W.-W. Xiong, P.-Z. Li, T.-H. Zhou, A. I. Y. Tok, R. Xu, Y. Zhao and Q. Zhang, Inorg. Chem., 2013, 52, 4148.
    • 30 (a) W. S. Sheldrick and M. Wachhold, Coord. Chem. Rev., 1998, 176, 211; (b) A. V. Powell, Int. J. Nanotechnol., 2011, 8, 783.
    • 31 (a) P. Vaqueiro and M. L. Romero, J. Phys. Chem. Solids, 2007, 68, 1239; (b) N. Zheng, X. Bu and P. Feng, J. Am. Chem. Soc., 2003, 125, 1138; (c) Y.-H. Wang, J.-B. Jiang, P. Wang, X.-L. Sun, Q.-Y. Zhu and J. Dai, CrystEngComm, 2013, 15, 6040; (d) K. M. Tan, Y. H. Ko, J. B. Parise, J. H. Park and A. Darovsky, Chem. Mater., 1996, 8, 2510.
    • 32 W.-W. Xiong, K. Ye, L. Ye and Q. Zhang, Inorg. Chem. Commun., 2013, 35, 337.
    • 33 CRC Handbook of Chemistry and Physics, CRC Press, New York, 74th edn, 2003.
    • 34 E.-I. Room, A. Kütt, I. Kaljurand, I. Koppel, I. Leito, I. A. Koppel, M. Mishima, K. Goto and M. Miyahara, Chem. - Eur. J., 2007, 13, 7631.
    • 35 R. L. Benoit, D. Lefebvre and M. Frechette, Can. J. Chem., 1987, 65, 996.
    • 36 A. Olin, B. Nolang, E. G. Osadchii, L.-O. Ohman and E. Rosen, in Chemical Thermodynamics Series: Chemical Thermodynamics of Selenium, ed. F. J. Mompean, J. Perrone and M. Illemassene, OECD Nuclear Energy Agency Data Bank, 2005, vol. 7, pp. 158-160.
    • 37 (a) P. M. Forster, A. R. Burbank, C. Livage, G. Férey and A. K. Cheetham, Chem. Commun., 2004, 368; (b) D. W. Aldous, N. F. Stephens and P. Lightfoot, Dalton Trans., 2007, 4207.
    • 38 (a) R. J. E. Lees, A. V. Powell and A. M. Chippindale, Polyhedron, 2005, 24, 1941; (b) H.-O. Stephan and M. G. Kanatzidis, Inorg. Chem., 1997, 36, 6050; (c) R. J. E. Lees, A. V. Powell and A. M. Chippindale, J. Phys. Chem. Solids, 2007, 68, 1215; (d) P. Vaqueiro, A. M. Chippindale and A. V. Powell, Inorg. Chem., 2004, 43, 7963; (e) L. Engelke, R. Stahler, M. Schur, C. Nather, W. Bensch and R. Pottgen, Z. Naturforsch., B: Chem. Sci., 2004, 59, 869; (f ) M. Schur, H. Rijnberk, C. Nather and W. Bensch, Polyhedron, 1998, 18, 101.
    • 39 M. Yuan, M. Dirmyer, J. Badding, A. Sen, M. Dahlberg and P. Schiffer, Inorg. Chem., 2007, 46, 7238.
    • 40 J. Heine, S. Santner and S. Dehnen, Inorg. Chem., 2013, 52, 4424.
    • 41 (a) P. Vaqueiro, Inorg. Chem., 2006, 45, 4150; (b) Y.-H. Wang, M.-H. Zhang, Y.-M. Yan, G.-Q. Bian, Q.-Y. Zhu and J. Dai, Inorg. Chem., 2010, 49, 9731; (c) J. Zhou, J. Dai, G.-Q. Bian and C.-Y. Li, Coord. Chem. Rev., 2009, 253, 1221.
    • 42 (a) E. Quiroga-Gonzalez, C. Näther and W. Bensch, Z. Naturforsh., B: Chem. Sci., 2009, 64, 1312; (b) E. QuirogaGonzalez, L. Kienle, C. Näther, V. S. K. Chakravadhanula, H. Lühmann and W. Bensch, J. Solid State Chem., 2010, 183, 2805.
    • 43 (a) N. Zheng, X. Bu and P. Feng, J. Am. Chem. Soc., 2005, 127, 5286; (b) J. Rumble and P. Vaqueiro, Solid State Sci., 2011, 13, 1137.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article