Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Walford, H. L.; White, N. J.
Publisher: AGU
Languages: English
Types: Article
Subjects: sub-02
An inverse model has been developed to determine the magnitude of denudation at\ud seabed and subsurface unconformities by using root-mean-square (RMS) stacking\ud velocity data derived from processing a set of seismic reflection profiles. This approach\ud provides superior spatial coverage in comparison to other methods, such as vitrinite\ud reflectance, apatite fission track, and sonic velocity modeling, which are restricted\ud to borehole locations. The model assumes exponential porosity decay with depth and a\ud standard velocity-porosity relationship in order to compute a synthetic RMS velocity\ud profile. Denudation values at two levels in the stratigraphy are then adjusted until the fit\ud between the model and the data is optimized. Successful modeling is dependent upon\ud independent estimates of the initial porosity of sediment since significant trade-off occurs\ud between initial porosity and denudation. Application to the west African shelf shows that\ud 0.5–1 km of denudation occurred along the entire margin, probably during late Neogene\ud times. The amount of denudation decreases oceanward and was probably triggered by\ud regional tilting associated with initiation and/or regeneration of continent-wide\ud mantle convective upwelling, which is thought to have affected much of subequatorial\ud Africa. A subsurface Oligocene unconformity represents as much as 2.5 km of denudation\ud and was probably produced by initiation of an oceanic current.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andersen, J. E., J. Cartwright, S. J. Drysdall, and N. Vivian (2000), Controls on turbidite sand deposition during gravity-driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola, Mar. Pet. Geol., 17, 1165 - 1203.
    • Bolli, H. M., W. B. F. Ryan, and Shipboard Scientific Party (1978), Angola continental margin-Sites 364 and 365, Initial Rep. Deep Sea Drill. Proj., 40, 357 - 456.
    • Bond, G. (1978), Evidence for Late Tertiary uplift of Africa relative to North America, South America, Australia and Europe, Tectonophysics, 94, 205 - 222.
    • Brice, S. E., M. D. Cochran, G. Pardo, and A. D. Edwards (1982), Tectonics and sedimentation of the South Atlantic rift sequence: Cabinda, Angola, in Studies in Continental Margin Geology, edited by J. S. Watkins and C. L. Drake, AAPG Mem., 34, 5 - 18.
    • Brown, R. W., D. J. Rust, M. A. Summerfield, A. J. W. Gleadow, and M. C. J. de Wit (1990), An early Cretaceous phase of accelerated erosion on the south-western margin of Africa: Evidence from apatite fission track analysis and the offshore sedimentary record, Nucl. Tracks Radiat. Measur., 17, 339 - 350.
    • Burke, K. (1996), The African plate, S. Afr. J. Geol., 99, 341 - 409.
    • Castagna, J. P., M. L. Batzle, and R. L. Eastwood (1985), Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics, 50, 571 - 581.
    • Christensen, N. I. (1982), Seismic velocities, in Handbook of physical properties of rocks, vol. II, edited by R. S. Carmichael, pp. 57 - 74,CRC Press, Boca Raton, Fla.
    • Cogley, J. G. (1985), Hypsometry of the continents, Z. Geomorphol., 53, 1 - 48.
    • Conrad, C. P., and M. Gurnis (2003), Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time, Geochem. Geophys. Geosyst., 4(3), 1031, doi:10.1029/ 2001GC000299.
    • Cramez, C., and M. P. A. Jackson (2000), Superposed deformation straddling the continental-oceanic transition in deep-water Angola, Mar. Pet. Geol., 17, 1095 - 1109.
    • Duval, B., C. Cramez, and M. P. A. Jackson (1992), Raft tectonics in the Kwanza Basin, Angola, Mar. Pet. Geol., 9, 389 - 404.
    • Erickson, S. N., and R. D. Jarrard (1998), Velocity-porosity relationships for water-saturated siliciclastic sediments, J. Geophys. Res., 103, 30,385 - 30,406.
    • Gosse, J. C., and F. M. Phillips (2001), Terrestrial in situ cosmogenic nuclides: Theory and application, Quat. Sci. Rev., 20, 1475 - 1560.
    • Grand, S. P., R. D. van der Hilst, and S. Widiyantoro (1997), Global seismic tomography: A snapshot of convection in the Earth, GSA Today, 7, 1 - 7.
    • Gurnis, M., J. X. Mitrovica, J. Ritsema, and H.-J. van Heijst (2000), Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African Superplume, Geochem. Geophys. Geosyst., 1, doi:10.1029/1999GC0000035.
    • Han, D., A. Nur, and D. Morgan (1986), Effects of porosity and clay content on wave velocities in sandstones, Geophysics, 51, 2093 - 2107.
    • Hillis, R. R. (1992), Evidence of Pliocene erosion at Ashmore Reef (Timor Sea) from the sonic velocities of Neogene limestone formations, Explor. Geophys., 23, 489 - 495.
    • Hillis, R. R. (1995), Quantification of Tertiary exhumation in the United Kingdom southern North Sea using sonic velocity data, AAPG Bull., 79, 130 - 152.
    • Holmes, A. (1965), Principles of Physical Geology, 2nd ed., Nelson, London.
    • Jones, S. M., N. J. White, and B. Lovell (2001), Cenozoic and Cretaceous transient uplift in the Porcupine Basin and its relationship to a mantle plume, in The Petroleum Exploration of Ireland's Offshore Basins, edited by P. M. Shannon, P. D. W. Haughton, and D. V. Corcoran, Geol. Soc. Spec. Publ., 188, 345 - 360.
    • Karner, G. D., N. W. Driscoll, J. P. McGinnis, W. D. Brumbaugh, and N. R. Cameron (1997), Tectonic significance of the syn-rift sediment packages across the Gabon-Cabinda continental margin, Mar. Pet. Geol., 14, 973 - 1000.
    • Lithgow-Bertelloni, C., and P. G. Silver (1998), Dynamic topography, plate driving forces and the African superswell, Nature, 395, 269 - 272.
    • Mavko, G., T. Mukerji, and J. Dvorkin (1998), The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge Univ. Press, New York.
    • McKenzie, D. (1994), The relationship between topography and gravity on Earth and Venus, Icarus, 112, 55 - 88.
    • Nyblade, A. A., and S. W. Robinson (1994), The African Superswell, Geophys. Res. Lett., 21, 765 - 768.
    • Parsons, B., and S. Daly (1983), The relationship between surface topography, gravity anomalies, and temperature structure of convection, J. Geophys. Res., 88, 1129 - 1144.
    • Partridge, T. C. (1998), Of diamonds, dinosaurs and diastrophism: 150 million years of landscape evolution in southern Africa, S. Afr. J. Geol., 101, 167 - 184.
    • Press, W. H., S. A. Teukolsky, W. T. Vettering, and B. P. Flannery (1992), Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge Univ. Press, New York.
    • Raymer, L. L., E. R. Hunt, and J. S. Gardner (1980), An improved sonic transit time-to-porosity transform, Trans. SPWLA Annu. Logging Symp., 21, P1 - P13.
    • Ritsema, J., H. J. van Heijst, and J. H. Woodhouse (1999), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925 - 1928.
    • Rowley, E. J., and N. J. White (1998), Inverse modelling of extension and denudation in the East Irish Sea and surrounding areas, Earth Planet. Sci. Lett., 161, 57 - 71.
    • Sclater, J. G., and P. A. F. Christie (1980), Continental stretching: An explanation of the post-mid-Cretaceous subsidence of the central North Sea basin, J. Geophys. Res., 85, 3711 - 3739.
    • Sclater, J. G., L. A. Lawver, and B. Parsons (1975), Comparison of long wavelength residual elevation and free-air gravity anomalies in the North Atlantic and possible implications for the thickness of the lithospheric plate, J. Geophys. Res., 80, 1031 - 1052.
    • Se´ranne, M. (1999), Early Oligocene stratigraphic turnover on the west Africa continental margin: A signature of the Tertiary greenhouse-to-icehouse transition?, Terra Nova, 11, 135 - 140.
    • Se´ranne, M., M. Seguret, and M. Fauchier (1992), Seismic super-units and post-rift evolution of the continental passive margin of southern Gabon, Bull. Soc. Geol. Fr., 163, 135 - 146.
    • Teisserenc, P., and J. Villemin (1990), Sedimentary basin of Gabon-Geology and oil systems, in Divergent/Passive Margin Basins, edited by J. D. Edwards and P. A. Santogrossi, AAPG Mem., 48, 117 - 199.
    • Uenzelmann-Neben, G. (1998), Neogene sedimentation history of the Congo Fan, Mar. Pet. Geol., 15, 635 - 650.
    • Uenzelmann-Neben, G., V. Speiss, and U. Bleil (1997), A seismic reconnaisance survey of the northen Congo Fan, Mar. Geol., 140, 283 - 306.
    • Valle, P. J., J. G. Gjelberg, and W. Helland-Hansen (2001), Tectonostratigraphic development in the eastern Lower Congo Basin offshore Angola, West Africa, Mar. Pet. Geol., 18, 909 - 927.
    • Vance, D., M. Bickle, S. Ivy-Ochs, and P. W. Kubik (2003), Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments, Earth Planet. Sci. Lett., 206, 273 - 288.
    • van der Hilst, R. D., S. Widiyantoro, and E. R. Engdahl (1997), Evidence for deep mantle circulation from global tomography, Nature, 386, 578 - 584.
    • Walgenwitz, F., M. Pagel, A. Meyer, H. Maluski, and P. Moine (1990), Thermo-chronological approach to reservoir diagensis in the offshore Angola basin: A fluid inclusion, 40Ar-39Ar and K-Ar investigation, AAPG Bull., 74, 547 - 563.
    • Ware, P. D., and J. P. Turner (2002), Sonic velocity analysis of the Tertiary denudation of the Irish Sea basin, in Exhumation of the North Atlantic Margin; Timing, Mechanisms and Implications for Petroleum Exploration, edited by A. G. Dore´ et al., Geol. Soc. Spec. Publ., 196, 355 - 370.
    • Wefer, G., W. H. Berger, and Shipboard Scientific Party (2002), Proceedings of the Ocean Drilling Program, Initial Reports, vol. 175, Ocean Drill. Program, College Station, Tex.
    • Wessel, P., and W. H. F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU, 79, 579.
    • Wheeler, P., and N. J. White (2000), Quest for dynamic topography: Observations from Southeast Asia, Geology, 28, 963 - 966.
    • Wyllie, M. R. J., J. A. R. Gregory, and L. W. Gardner (1956), Elastic wave properties in heterogeneous and porous media, Geophysics, 21, 41 - 70.
    • Yilmaz, O¨ . (2001), Seismic data analysis: Processing, inversion and interpretation of seismic data, Invest. Geophys. 10, Soc. of Explor. Geophys., Tulsa, Okla.
    • Zhao, D. (2001), Seismic structure and origin of hotspots and mantle plumes, Earth Planet. Sci. Lett., 192, 251 - 265. H. L. Walford and N. J. White, Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, UK. ()
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article