LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pesce, Giovanni Luca; Morgan, Deborah; Odgers, David; Henry, Alison; Allen, Mollie; Ball, Richard J. (2013)
Publisher: Institution of Civil Engineers
Languages: English
Types: Article
Subjects: H200
Limestone sourced from Salisbury Cathedral and Bath Abbey (UK) was treated with commercially available nanolime of concentration 25 g/l. The response of the stones to the treatment was studied using a variety of analysis techniques including optical microscopy, electron microscopy, drilling resistance measurement and mercury intrusion porosimetry. Weathered and non-weathered surfaces of both types of stones were compared. All the specimens were characterised before and after the treatment to determine any changes in their properties caused by their weathering and by the treatment itself. Results show that the degradation processes of the stones strongly affect their interaction with nanolime consolidation treatments. Drilling resistance measurements of treated and untreated samples were compared. After 20 days significant increases in sub-surface drilling resistance was observed in the non-weathered Bath stone and a small increase in the weathered Bath stone after 6 months was also noted. Both weathered and non-weathered Chilmark stone showed an increase in drilling resistance after 6 months, however at 20 days this was most evident in the samples treated with nanolime in isopropanol as opposed to ethanol.

Share - Bookmark

Funded by projects

Cite this article