Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gurumdimma, Nentawe
Languages: English
Types: Doctoral thesis
Subjects: QA76
The need for computer systems to be reliable has increasingly become important as the dependence on their accurate functioning by users increases. The failure of these systems could very costly in terms of time and money. In as much as system's designers try to design fault-free systems, it is practically impossible to have such systems as different factors could affect them. In order to achieve system's reliability, fault tolerance methods are usually deployed; these methods help the system to produce acceptable results even in the presence of faults. Root cause analysis, a dependability method for which the causes of failures are diagnosed for the purpose of correction or prevention of future occurrence is less efficient. It is reactive and would not prevent the first failure from occurring. For this reason, methods with predictive capabilities are preferred; failure prediction methods are employed to predict the potential failures to enable preventive measures to be applied.\ud \ud Most of the predictive methods have been supervised, requiring accurate knowledge of the system's failures, errors and faults. However, with changing system components and system updates, supervised methods are ineffective. Error detection methods allows error patterns to be detected early to enable preventive methods to be applied. Performing this detection in an unsupervised way could be more effective as changes to systems or updates would less affect such a solution. In this thesis, we introduced an unsupervised approach to detecting error patterns in a system using its data. More specifically, the thesis investigates the use of both event logs and resource utilization data to detect error patterns. It addresses both the spatial and temporal aspects of achieving system dependability. The proposed unsupervised error detection method has been applied on real data from two different production systems. The results are positive; showing average detection F-measure of about 75%.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article