Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Moore, Kate M.; Thomas, Gareth J.; Duffy, Stephen W.; Warwick, Jane; Gabe, Rhian; Chou, Patrick; Ellis, Ian O.; Green, Andrew R.; Haider, Syed; Brouilette, Kellie; Saha, Antonio; Vallath, Sabari; Bowen, Rebecca; Chelala, Claude; Eccles, Diana; Tapper, William J.; Thompson, Alastair M.; Quinlan, Phillip; Jordan, Lee; Gillett, Cheryl; Brentnall, Adam; Violette, Shelia; Weinreb, Paul H.; Kendrew, Jane; Barry, Simon T.; Hart, Ian R.; Jones, J. Louise; Marshall, John F. (2014)
Publisher: Oxford University Press
Journal: JNCI Journal of the National Cancer Institute
Languages: English
Types: Article
Subjects: RC0254, Article

Classified by OpenAIRE into

mesheuropmc: skin and connective tissue diseases
Integrin ?v?6 promotes migration, invasion, and survival of cancer cells; however, the relevance and role of ?v?6 has yet to be elucidated in breast cancer.

Protein expression of integrin subunit beta6 (?6) was measured in breast cancers by immunohistochemistry (n > 2000) and ITGB6 mRNA expression measured in the Molecular Taxonomy of Breast Cancer International Consortium dataset. Overall survival was assessed using Kaplan Meier curves, and bioinformatics statistical analyses were performed (Cox proportional hazards model, Wald test, and Chi-square test of association). Using antibody (264RAD) blockade and siRNA knockdown of ?6 in breast cell lines, the role of ?v?6 in Human Epidermal Growth Factor Receptor 2 (HER2) biology (expression, proliferation, invasion, growth in vivo) was assessed by flow cytometry, MTT, Transwell invasion, proximity ligation assay, and xenografts (n ? 3), respectively. A student's t-test was used for two variables; three-plus variables used one-way analysis of variance with Bonferroni's Multiple Comparison Test. Xenograft growth was analyzed using linear mixed model analysis, followed by Wald testing and survival, analyzed using the Log-Rank test. All statistical tests were two sided.

High expression of either the mRNA or protein for the integrin subunit ?6 was associated with very poor survival (HR = 1.60, 95% CI = 1.19 to 2.15, P = .002) and increased metastases to distant sites. Co-expression of ?6 and HER2 was associated with worse prognosis (HR = 1.97, 95% CI = 1.16 to 3.35, P = .01). Monotherapy with 264RAD or trastuzumab slowed growth of MCF-7/HER2-18 and BT-474 xenografts similarly (P < .001), but combining 264RAD with trastuzumab effectively stopped tumor growth, even in trastuzumab-resistant MCF-7/HER2-18 xenografts.

Targeting ?v?6 with 264RAD alone or in combination with trastuzumab may provide a novel therapy for treating high-risk and trastuzumab-resistant breast cancer patients.

Share - Bookmark

Funded by projects

  • RCUK | Establishing the utility a...

Cite this article