Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baldwin, KA (2012)
Languages: English
Types: Doctoral thesis
Unlike the familiar “ring-stain" formed when spilt coffee drops are left to dry, liquids containing high molecular weight polymer molecules leave a range of other deposit pat terns. In this thesis I observe that aqueous solutions of the polymer poly(ethylene oxide) (PEO) dries to form either the common coffee-ring stain, flat uniform “pancakes", or tall central “pillars". To investigate this phenomenon, I varied experimental factors including: atmospheric temperature, humidity and pressure; polymer molecular weight and concentration; water-ethanol solvent ratios; droplet volume, contact angle and inclination. These factors indicate a region in parameter-space in which central pillars form, favouring fast drying, low temperature, high contact angle, high concentration, high or low (but not intermediate) water-ethanol ratio, and intermediate molecular weight. I identify four stages in the pillar forming drying process, including a pseudo-dewetting liquid stage which appears to be driven by the formation of a contracting spherulite collar around the droplet's 3-phase contact line.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 8.1 Pillar Formation - How Does It Happen? . . . . . . . . . . . . . . 260
    • 8.1.1 Pinned Drying . . . . . . . . . . . . . . . . . . . . . . . . 260 [4] A. Stannard. Dewetting-mediated pattern formation in nanoparticle assem-
    • blies. Journal of Physics: Condensed Matter, 23:083001, 2011. [5] S. M. Rowan, M. I. Newton, F. W. Driewer, and G. McHale. Evaporation
    • B, 104(34):8217-8220, 2000. [6] G. Li and K. Graf. Microstructures formation by deposition of toluene
    • drops on polystyrene surface. Phys.Chem.Chem.Phys., 11(33):7137-7144,
    • 2009. [7] L. Pauchard and C. Allain. Buckling instability induced by polymer solution
    • drying. Europhysics Letters, 62(6):897-903, JUN 2003. [8] F. Parisse and C. Allain. Drying of colloidal suspension droplets: exper-
    • imental study and profile renormalization. Langmuir, 13(14):3598-3602,
    • 1997. [9] H. Hu and R. G. Larson. Marangoni effect reverses coffee-ring depositions.
    • The Journal of Physical Chemistry B, 110(14):7090-7094, 2006. [10] M. Rubinstein and R. H. Colby. Polymer physics, volume 105. Oxford
    • University Press New York, 2003. [11] J. A. Riddick, E. E. Toops Jr, R. L. Wieman, and R. H. Cundiff.
    • 26(7):1149-1155, 1954. [12] P. J. Flory. Principles of polymer chemistry. Cornell Univ Pr, 1953. [13] R. A. L. Jones. Soft condensed matter, volume 23. IOP Publishing, 2002. [14] H. Tao, C. Huang, and T. P. Lodge. Correlation length and entanglement
    • molecules, 32(4):1212-1217, 1999. [15] W. Brown and T. Nicolai. Static and dynamic behavior of semidilute poly-
    • mer solutions. Colloid & Polymer Science, 268(11):977-990, 1990. [16] P. S. Doyle and M. Gupta. Polymer and sphere di usion in con nement,
    • 2004. [17] M. Doi and S. F. Edwards. The theory of polymer dynamics, volume 73.
    • Oxford University Press, USA, 1988. [18] U. Zettl, S. T. Hoffmann, F. Koberling, G. Krausch, J. Enderlein, L. Har-
    • Macromolecules, 42(24):9537-9547, 2009. [19] T. Nicolai and W. Brown. Cooperative diffusion of concentrated polymer
    • dop. Macromolecules, 29(5):1698-1704, 1996. [20] M. Doi and S. F. Edwards. The theory of polymer dynamics, volume 73.
    • Oxford University Press, USA, 1988. [21] W. Brown. Slow-mode diffusion in semidulute solutions examined by dy-
    • namic light scattering. Macromolecules, 17(1):66-72, 1984. [23] D. K. Bick and T. C. B. McLeish. Topological contributions to nonlinear
    • elasticity in branched polymers. Physical Review Letters, 76(14):2587-2590,
    • 1996. [24] J. Qin and S. T. Milner. Counting polymer knots to find the entanglement
    • length. Soft Matter, 7(22):10676-10693, 2011. [25] M. Rubinstein, R. H. Colby, and A. V. Dobrynin. Dynamics of semidilute
    • polyelectrolyte solutions. Physical Review Letters, 73(20):2776-2779, 1994. [26] A. V. Dobrynin, R. H. Colby, and M. Rubinstein. Scaling theory of poly-
    • electrolyte solutions. Macromolecules, 28(6):1859-1871, 1995. [27] T. A. Kavassalis and J. Noolandi. New view of entanglements in dense
    • polymer systems. Physical Review Letters, 59(23):2674-2677, 1987. [28] Y. H. Lin. Number of entanglement strands per cubed tube diameter, a
    • Macromolecules, 20(12):3080-3083, 1987. [29] R. P. Wool. Polymer entanglements. Macromolecules, 26(7):1564-1569,
    • 1993. [30] A. Dittmore, D. B. McIntosh, S. Halliday, and O. A. Saleh. Single-molecule
    • glycol). Physical Review Letters, 107(14):148301, 2011. [31] W. M. Kulicke, M. K¨otter, and H. Gr¨ager. Drag reduction phenomenon
    • acterization/Polymer Solutions, pages 1-68, 1989. [32] D. H. Fisher and F. Rodriguez. Degradation of drag-reducing polymers.
    • Journal of Applied Polymer Science, 15(12):2975-2985, 1971. [33] H. J. Choi, C. A. Kim, J. I. Sohn, and M. S. Jhon. An exponential decay
    • Degradation and Stability, 69(3):341-346, 2000. [34] H. Thissen, T. Gengenbach, R. du Toit, D. F. Sweeney, P. Kingshott, H. J.
    • silicone hydrogel contact lenses. Biomaterials, 31(21):5510-5519, 2010. [36] S. Guilbert, N. Gontard, and L. G. M. Gorris. Prolonging the shelf-life of
    • Wiss u.-Technol, 29:10-17, 1996. [38] S. E. Matter, P. S. Rice, and D. R. Campbell. Colonic lavage solutions:
    • plain versus flavored. The American Journal of Gastroenterology, 88(1):49,
    • 1993. [39] A. C. Dumetz, R. A. Lewus, A. M. Lenhoff, and E. W. Kaler. Effects
    • liquid liquid phase separation. Langmuir, 24(18):10345-10351, 2008. [40] B. Hammouda. Solvation characteristics of a model water-soluble polymer.
    • Journal of Polymer Science Part B: Polymer Physics, 44(22):3195-3199,
    • 2006. [41] F. E. Bailey Jr and R. W. Callard. Some properties of poly(ethylene oxide)
    • in aqueous solution. Journal of Applied Polymer Science, 1(1):56-62, 1959. [42] R. Kjellander and E. Florin. Water structure and changes in thermal sta-
    • Trans.1, 77(9):2053-2077, 1981. [43] S. Sasi´c, V. H. Segtnan, and Y. Ozaki. Self-modeling curve resolution study
    • tion of water structure. The Journal of Physical Chemistry A, 106(5):760-
    • 766, 2002. [44] T. Shikata, R. Takahashi, and A. Sakamoto. Hydration of poly (ethylene ox-
    • The Journal of Physical Chemistry B, 110(18):8941-8945, 2006. [45] E. E. Dormidontova. Role of competitive PEO-water and water-water
    • 35(3):987-1001, 2002. [46] R. L. Cook, H. E. King Jr, and D. G. Peiffer. Pressure-induced crossover
    • Review Letters, 69(21):3072-3075, 1992. [47] R. L. Cook, H. E. King Jr, and D. G. Peiffer. High-pressure viscosity of
    • dilute polymer solutions in good solvents. Macromolecules, 25(11):2928-
    • 2934, 1992. [48] K. Devanand and J. C. Selser. Polyethylene oxide does not necessarily
    • aggregate in water. Nature, 343(6260):739-741, 1990. [49] M. Polverari and T. G. M. van de Ven. Dilute aqueous poly (ethylene oxide)
    • Journal of physical chemistry, 100(32):13687-13695, 1996. [50] W. F. Polik and W. Burchard. Static light scattering from aqueous poly
    • (ethylene oxide) solutions in the temperature range 20-90◦C. Macro-
    • molecules, 16(6):978-982, 1983. [51] S. Bekiranov, R. Bruinsma, and P. Pincus. Solution behavior of polyethy-
    • Review E, 55(1):577, 1997. [52] B. Hammouda, D. L. Ho, and S. Kline. Insight into clustering in poly
    • (ethylene oxide) solutions. Macromolecules, 37(18):6932-6937, 2004. [53] P. G. De Gennes. A second type of phase separation in polymer solutions.
    • Comptes rendus de l'Academie des sciences. Serie 2, Mecanique, Physique,
    • Chimie, Sciences de l'univers, Sciences de la Terre, 313(10):1117-1122,
    • 1991. [54] S. Kinugasa, H. Nakahara, N. Fudagawa, and Y. Koga. Aggregative be-
    • 27(23):6889-6892, 1994. [55] B. Hammouda. The mystery of clustering in macromolecular media. Poly-
    • mer, 50(22):5293-5297, 2009. [56] K. W. Ebagninin, A. Benchabane, and K. Bekkour. Rheological charac-
    • Journal of colloid and interface science, 336(1):360-367, 2009. [57] D. R. Beech, C. Booth, I. H. Hillier, and C. J. Pickles. The crystallization
    • European Polymer Journal, 8(6):799-807, 1972. [58] C. Devoy and L. Mandelkern. Effect of molecular weight on the radial
    • growth rates of polymer spherulites. Journal of Polymer Science Part A2:
    • Polymer Physics, 7(11):1883-1894, 1969. [59] P. G. De Gennes, F. Brochard-Wyart, and D. Qu´er´e. Capillarity and wetting
    • phenomena: drops, bubbles, pearls, waves, chapter 1. Springer Verlag, 2004. [60] G. N. Lewis and K. S. Pitzer. Valence and the Structure of Atoms and
    • Molecules, page 83. The Chemical Catalog Company, Incorporated, 1923. [61] S. R. Palit. Thermodynamic interpretation of the Eo¨tvo¨s constant. 1956. [62] J. V. Ward and P. Ward. Biology and habitat, volume 1, pages 74, 96, 172,
    • 180. John Wiley & Sons, 1992. [63] W. A. Zisman. Relation of the equilibrium contact angle to liquid and solid
    • constitution. Advances in Chemistry Series, 43(1):51, 1964. [64] G. H. Findenegg and S. Herminghaus. Wetting: statics and dynamics.
    • Current opinion in colloid & interface science, 2(3):301-307, 1997. [65] T. Young. An essay on the cohesion of fluids. Philo. Trans. Soc. London,
    • 95(65), 1805. [69] C. Allain, D. Ausserre, and F. Rondelez. A new method for contact-angle
    • 107(1):5-13, 1985. [72] N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry.
    • Materials, 16(21):1929-1932, 2004. [82] B. A. Noskov, A. V. Akentiev, G. Loglio, and R. Miller. Dynamic surface
    • Journal of Physical Chemistry B, 104(33):7923-7931, 2000. [84] P. G. De Gennes, F. Brochard-Wyart, and D. Qu´er´e. Capillarity and wetting
    • phenomena: drops, bubbles, pearls, waves, chapter 2. Springer Verlag, 2004. [85] A. M. Cazabat and G. Guna. Evaporation of macroscopic sessile droplets.
    • Soft Matter, 6(12):2591-2612, 2010. [86] A. Fick. Phil. Mag. S. 4, 10:30-39, 1855. [87] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A.
    • 62(1):756, 2000. [88] C. E. Klots. Evaporative cooling. The Journal of chemical physics, 83:5854,
    • 1985. [89] J. C. Maxwell and W. D. Niven. The Scienti c Papers of James Clerk
    • Maxwell, volume 2. Dover Pubns, 2003. [90] D. H. Shin, S. H. Lee, J. Y. Jung, and J. Y. Yoo. Evaporating characteristics
    • Engineering, 86(4-6):1350-1353, 2009. [91] M. E. R. Shanahan, K. Sefiane, and J. R. Moffat. Dependence of volatile
    • droplet lifetime on the hydrophobicity of the substrate. Langmuir, 2011. [92] B. Rieger, H. R. C. Dietrich, L. R. Doel, and L. J. V. Vliet. Diffusion
    • technique, 65(45):218-225, 2004. [93] G. D. Nadkarni and S. Garoff. An investigation of microscopic aspects of
    • (Europhysics Letters), 20:523, 1992. [95] CP Royall, R. van Roij, and A. Van Blaaderen. Extended sedimentation
    • statics. Journal of Physics: Condensed Matter, 17:2315, 2005. [96] A. L. Kholodenko and J. F. Douglas. Generalized Stokes-Einstein equation
    • for spherical particle suspensions. Physical Review E, 51(2):1081, 1995. [97] A. Askounis, D. Orejon, V. Koutsos, K. Sefiane, and M. E. R. Shanahan.
    • and shape revealed by atomic force microscopy. Soft Matter, 7(9):4152-
    • 4155, 2011. [98] X. Shen, C. M. Ho, and T. S. Wong. Minimal size of coffee ring structure.
    • The Journal of Physical Chemistry B, 114(16):5269-5274, 2010. [99] D. Kaya, VA Belyi, and M. Muthukumar. Pattern formation in drying
    • 133:114905, 2010. [103] B. J. Park and E. M. Furst. Attractive interactions between colloids at the
    • oil-water interface. Soft Matter, 7(17):7676-7682, 2011. [104] J. C. Loudet, A. M. Alsayed, J. Zhang, and A. G. Yodh. Capillary in-
    • 94(1):18301, 2005. [105] K. Uno, K. Hayashi, T. Hayashi, K. Ito, and H. Kitano. Particle adsorption
    • hydrophobic surfaces. Colloid & Polymer Science, 276(9):810-815, 1998. [106] H. B. Eral, D. M. Augustine, MHG Duits, and F. Mugele. Suppressing
    • drops using electrowetting. Soft Matter, 7(10):4954-4958, 2011. [107] A. V. Getling. Rayleigh-Benard convection: structures and dynamics, vol-
    • ume 11. World Scientific Pub Co Inc, 1998. [109] M. F. Schatz, S. J. VanHook, W. D. McCormick, J. B. Swift, and H. L.
    • view Letters, 75(10):1938-1941, 1995. [114] R. Savino, D. Paterna, and N. Favaloro. Buoyancy and marangoni ef-
    • 16(4):562-574, 2002. [115] F. Girard, M. Antoni, and K. Sefiane. On the effect of Marangoni flow
    • on evaporation rates of heated water drops. Langmuir, 24(17):9207-9210,
    • 2008. [116] F. Girard, M. Antoni, S. Faure, and A. Steinchen. Evaporation and
    • 22(26):11085-11091, 2006. [118] K. Sefiane, L. Tadrist, and M. Douglas. Experimental study of evaporating
    • tional Journal of Heat and Mass Transfer, 46(23):4527-4534, 2003. [125] L. Pauchard, J. P. Hulin, and C. Allain. Drops that buckle. Europhysics
    • News, 36(1):9-11, 2005. [126] T. Kajiya, D. Kaneko, and M. Doi. Dynamical visualization of “coffee stain
    • Langmuir, 24(21):12369-12374, 2008. [127] T. Okuzono, K. Ozawa, and M. Doi. Simple model of skin formation
    • ters, 97(13):136103, 2006. [128] Y. Minoura, T. Kasuya, S. Kawamura, and A. Nakano. Degradation of poly
    • A-2: Polymer Physics, 5(1):125-142, 1967. [129] A. Nakano and Y. Minoura. Degradation of polymers by high-speed stirring.
    • Journal of Applied Polymer Science, 15(4):927-936, 1971. [130] J. A. Odell, A. J. Muller, K. A. Narh, and A. Keller. Degradation of polymer
    • solutions in extensional flows. Macromolecules, 23(12):3092-3103, 1990. [131] E. M. d'Autry. Positive-displacement pipette, 1982. [149] S. Das, A. Marchand, B. Andreotti, and J. H. Snoeijer. Elastic deformation
    • due to tangential capillary forces. Physics of Fluids, 23:072006, 2011. [151] M. Reiner. The Deborah number. Physics Today, 17:62, 1964. [152] N. E. Hurlburt, P. C. Matthews, and A. M. Rucklidge. Solar magnetocon-
    • vection(invited review). Solar Physics, 192(1):109-118, 2000. [153] B. I. Shraiman. Diffusive transport in a Rayleigh-B´enard convection cell.
    • Physical Review A, 36(1):261, 1987. [154] J. C. Maxwell. Theory of heat. Dover Publications, 2001. [162] G. P. Arrighini, M. Maestro, and R. Moccia. Magnetic properties of poly-
    • atomic molecules. I. magnetic susceptibility of H2O, NH3, CH4, H2O2. The
    • Journal of chemical physics, 49:882, 1968. [164] C. Simmonds. Alcohol, Its Production, Properties, Chemistry, And Indus-
    • trial Applications. Macmillan And Co., 1919.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article