OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Novak, Lenka; Ambaum, Maarten H. P.; Tailleux, Rémi (2015)
Publisher: American Meteorological Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Physics::Atmospheric and Oceanic Physics, Physics::Geophysics, Astrophysics::High Energy Astrophysical Phenomena
The North Atlantic eddy-driven jet exhibits latitudinal variability, with evidence of three preferred latitudinal locations: south, middle and north. Here we examine the drivers of this variability and the variability of the associated storm track. We investigate the changes in the storm track characteristics for the three jet locations, and propose a mechanism by which enhanced storm track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. Our results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet deflecting effect was found to operate most prominently downstream of the storm track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm track characteristics can be viewed as different stages of the storm track’s spatio-temporal lifecycle.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ambaum, M. H. P., and L. Novak, 2014: A nonlinear oscillator describing storm track variability. Quart. J. Roy. Meteor. Soc., 140, 2680-2684, doi:10.1002/qj.2352.
    • --, B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 3495-3507, doi:10.1175/1520-0442(2001)014,3495:AOONAO.2.0.CO;2.
    • Athanasiadis, P., and M. H. P. Ambaum, 2009: Linear contributions of different time scales to teleconnectivity. J. Climate, 22, 3720-3728, doi:10.1175/2009JCLI2707.1.
    • --, and --, 2010: Do high-frequency eddies contribute to lowfrequency teleconnection tendencies? J. Atmos. Sci., 67, 419- 433, doi:10.1175/2009JAS3153.1.
    • Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121-144, doi:10.1175/1520-0469(2004)061,0121:SVOTNA.2.0.CO;2.
    • Blackmon, M. L., Y.-H. Lee, and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961-980, doi:10.1175/ 1520-0469(1984)041,0961:HSOMHF.2.0.CO;2.
    • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 1784-1805, doi:10.1175/2011JAS3674.1.
    • Chang, E., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163-2183, doi:10.1175/1520-0442(2002)015,02163: STD.2.0.CO;2.
    • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016-1022, doi:10.1175/ 1520-0450(1979)018,1016:LFIOAT.2.0.CO;2.
    • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901- 924, doi:10.1256/qj.02.76.
    • Frame, T. H., M. H. P. Ambaum, S. S. Gray, and J. Methven, 2011: Ensemble prediction of transitions of the North Atlantic eddydriven jet. Quart. J. Roy. Meteor. Soc., 137, 1288-1297, doi:10.1002/qj.829.
    • Franzke, C., and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62, 3250-3267, doi:10.1175/JAS3536.1.
    • --, S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145-160, doi:10.1175/1520-0469(2004)061,0145:ITNAOA.2.0.CO;2.
    • --, T. Woollings, and O. Martius, 2011: Persistent circulation regimes and preferred regime transitions in the North Atlantic. J. Atmos. Sci., 68, 2809-2825, doi:10.1175/JAS-D-11-046.1.
    • Gerber, E. P., and G. K. Vallis, 2007: Eddy-zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 3296- 3311, doi:10.1175/JAS4006.1.
    • Hannachi, A., T. Woolings, and K. Fraedrich, 2012: The North Atlantic jet stream: A look at preferred positions, paths and transitions. Quart. J. Roy. Meteor. Soc., 138, 862-877, doi:10.1002/qj.959.
    • Hoskins, B., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 1854-1864, doi:10.1175/1520-0469(1990)047,1854: OTEOST.2.0.CO;2.
    • --, I. James, and G. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595-1612, doi:10.1175/1520-0469(1983)040,1595: TSPAMF.2.0.CO;2.
    • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 230 pp.
    • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 1212-1227, doi:10.1175/1520-0442(2003)16,1212:EFFITN.2.0.CO;2.
    • Mailier, P. J., D. B. Stephenson, C. A. T. Ferro, and K. I. Hodges, 2006: Serial clustering of extratropical cyclones. Mon. Wea. Rev., 134, 2224-2240, doi:10.1175/MWR3160.1.
    • Messori, G., and A. Czaja, 2013: On the sporadic nature of meridional heat transport by transient eddies. Quart. J. Roy. Meteor. Soc., 139, 999-1008, doi:10.1002/qj.2011.
    • Namias, J., 1950: The index cycle and its role in the general circulation. J. Meteor., 7, 130-139, doi:10.1175/1520-0469(1950)007,0130: TICAIR.2.0.CO;2.
    • Orlanski, I., 1998: Poleward deflection of storm tracks. J. Atmos. Sci., 55, 2577-2602, doi:10.1175/1520-0469(1998)055,2577: PDOST.2.0.CO;2.
    • --, 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 993-1023, doi:10.1175/ 1520-0469(2003)60,993:BIELCI.2.0.CO;2.
    • Pinto, J. G., S. Zacharias, A. H. Fink, G. C. Leckebusch, and U. Ulbrich, 2009: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., 32, 711-737, doi:10.1007/s00382-008-0396-4.
    • --, M. Reyers, and U. Ulbrich, 2011: The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dyn., 36, 337-354, doi:10.1007/ s00382-010-0770-x.
    • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 1569-1592, doi:10.1175/2008JAS2919.1.
    • --, and I. Orlanski, 2007: Characteristics of the Atlantic stormtrack eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241-266, doi:10.1175/ JAS3850.1.
    • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the ''bomb.'' Mon. Wea. Rev., 108, 1589-1606, doi:10.1175/1520-0493(1980)108,1589:SDCOT.2.0.CO;2.
    • Thompson, D. W. J., and T. Birner, 2012: On the linkages between the tropospheric isentropic slope and eddy fluxes of heat during Northern Hemisphere winter. J. Atmos. Sci., 69, 1811- 1823, doi:10.1175/JAS-D-11-0187.1.
    • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17-55, doi:10.1002/qj.49711950903.
    • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012, doi:10.1256/ qj.04.176.
    • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.
    • Wittman, M., R. Scott, and A. Charlton, 2004: Stratospheric influence on baroclinic lifecycles: Connection to the Arctic Oscillation. Geophys. Res. Lett., 31, L16113, doi:10.1029/ 2004GL020503.
    • --, A. Charlton, and L. Polvani, 2007: The effect of lower stratospheric shear on barclinic instability. J. Atmos. Sci., 64, 479-496, doi:10.1175/JAS3828.1.
    • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609-626, doi:10.1175/ 2007JAS2347.1.
    • --, A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856-868, doi:10.1002/qj.625.
    • --, J. G. Pinto, and J. A. Santos, 2011: Dynamical evolution of North Atlantic ridges and poleward jet stream displacements. J. Atmos. Sci., 68, 954-963, doi:10.1175/2011JAS3661.1.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok