LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kler, Rantej Singh (2014)
Languages: English
Types: Doctoral thesis
Subjects: QD0415, QD0241
Solar generated hydrogen as an energy source is green, sustainable, with a high\ud energy density. One day the majority of current fossil fuel based technology could\ud be replaced with hydrogen technology reducing CO2 emission drastically. The goal\ud in this research is to explore hybrid metal oxide photocatalysts in the pursuit of\ud achieving highly efficient photoanodes for use in photoelectrochemical cells (PEC).\ud Achieving high efficiencies of hydrogen production in photoelectrochemical cells is\ud the key challenge for the commercialisation of PEC technology as a viable, sustainable,\ud hydrogen source; limited only by the lifetime of the sun and the resources of\ud the metal oxide materials.\ud In this research TiO2, Fe-Ti-O, ZnO, and Zn2TiO4 are the photocatalysts explored.\ud Alloys of Ti-Fe-O showed improvement over TiO2, whilst a hybrid heterostructure\ud of ZnO/Zn2TiO4/TiO2 enhanced photocurrent densities significantly. A\ud barrier layer in the photoanode achieved localised exciton separation and reduction\ud of recombination rates by inhibiting back flow of electrons after injection into the\ud TiO2 layer.\ud Nanotubes are created by the simple electrochemical process of anodisation. The\ud nanotube composition depends on the anode material. To control the composition ofthe anode, iron and titanium are co-deposited onto a substrate using electron beam\ud evaporation. The introduction of iron into titania nanotubes engineered the band\ud gap, lowering the band gap energy to that of iron oxide whilst the positions of the\ud conduction and valence bands with respect to the oxidation and reduction potentials\ud of water remained favourable. Fe-Ti-O nanotubes showed remarkable photocurrent\ud density improvement compared to TiO2 nanotubes.\ud ZnO nanostructures deposited by vapour transport mechanisms showed variability\ud in the morphology of the structures, as governed by the growth dynamics.\ud Herein, it is shown that an electronically favourable situation arises by the formation\ud of a ZnO-Zn2TiO4-TiO2 heterostructure and a high photocatalytic activity is\ud reported. The structure is composed of a large surface area ZnO nanorod photoabsorber\ud formed on a Ti foil which forms a Zn2TiO4 barrier layer between ZnO and\ud TiO2. The Zn2TiO4 layer inhibits electron transport toward the surface of the photoanode\ud whilst encouraging charge transport to the hydrogenation electrode. The\ud heterostructure interfacial surface area is extended through the utilisation of TiO2\ud nanotubes, which demonstrated a 20.22 % photoelectrochemical efficiency under UV\ud illumination.\ud Surface modification of ZnO nanorods with aerosol assisted chemical vapour\ud deposited TiO2 nanoparticles enhanced photocurrent densities of the ZnO rods,\ud improving charge separation of excitons created within the TiO2 nanoparticles.\ud ZnO nanotubes formed via a novel route using chemical bath deposition of ZnO\ud is investigated, an annulus ZnO seed layer facilitated the site specific growth of ZnO\ud nanotubes whilst a uniform seed layer formed ZnO nanorods.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 1 1.1 Current Non-Solar Renewable Energy Technologies . . . . . . . . . . 2 1.1.1 Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Wind Turbine Technologies . . . . . . . . . . . . . . . . . . . 3 1.1.3 Hydroelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Solar Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Semiconductor Fundamentals . . . . . . . . . . . . . . . . . . 7 1.2.2 Solid-State Photovoltaics (PV) . . . . . . . . . . . . . . . . . 9 1.2.3 Photoelectrochemical Solar Cells (PEC) . . . . . . . . . . . . 12 Dye Sensitised Solar Cells (DSSC's) . . . . . . . . . . . . . . . 13 Photocatalytic Water Electrolysis . . . . . . . . . . . . . . . . 14 1.3 Utilising Nanostructured Metal Oxides . . . . . . . . . . . . . . . . . 17 Photoanode Fundamentals . . . . . . . . . . . . . . . . . . . . 17 Advantages of Nanomaterial Photoanodes . . . . . . . . . . . 20 1.4 Hydrogen, Fuel of the Future? . . . . . . . . . . . . . . . . . . . . . . 23 Current Methods (CO2 Emissive) of Hydrogen Production . . 23 CO2 Neutral Methods of Hydrogen Production . . . . . . . . . 24 Hydrogen Storage . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    • 2 Analytical Methods 32 2.1 Scanning Electron Microscope (SEM) . . . . . . . . . . . . . . . . . . 32 2.1.1 Electron Source . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.2 Morphology Imaging . . . . . . . . . . . . . . . . . . . . . . . 35 Evehard-Thornley Detector . . . . . . . . . . . . . . . . . . . 36 2.1.3 Compositional Analysis - EDX . . . . . . . . . . . . . . . . . . 37 2.2 X-ray Diffraction (XRD) . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3 Photo-Electrochemistry Overview . . . . . . . . . . . . . . . . . . . . 43 2.3.1 Experimental setup of a solar water splitting cell . . . . . . . 45 2.3.2 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Xenon Lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Xenon Lamp, with a UV Transmitting Filter Installed . . . . 48 Cold Cathode Fluorescent Lamp light source . . . . . . . . . 49 2.3.3 Efficiency Analysis of the Photoanodes . . . . . . . . . . . . . 49
    • 3 Synthetic Methods 52 3.1 Electron Beam Evaporation . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.1 Maintaining a High Vacuum Environment . . . . . . . . . . . 55 Rough Rotary Pump . . . . . . . . . . . . . . . . . . . . . . . 56 Turbo Molecular Pump . . . . . . . . . . . . . . . . . . . . . . 57 Titanium Sublimation Pump . . . . . . . . . . . . . . . . . . . 57 Ion Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1.2 Deposition Conditions and Rates . . . . . . . . . . . . . . . . 59 3.2 Anodisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Vapour Transport Synthesis . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.1 Vapour Liquid Solid Growth & Vapour Solid Growth . . . . . 66 3.3.2 AACVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 Chemical Bath Deposition (ZnO) . . . . . . . . . . . . . . . . . . . . 71
    • 4 Fe-Ti-O Nanotube Composite Formation via Anodisation. 73 4.1 TiO2 Nanotube Formation . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Fe2O3 Nanotube Formation . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.1 Ti Thin Film PVD on to a FTO Substrate . . . . . . . . . . . 78 4.3 Co-Evaporated Fe/Ti Thin Film, and the Formation of Nanotubes . . 80 4.4 TiO2 and Fe2O3 Nanotube Formation on Complementary Substrates . 83 4.4.1 Titanium and Iron stacked Thin Film on Conductive Glass . . 85 4.5 Photoelectrochemical Analysis . . . . . . . . . . . . . . . . . . . . . . 88 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
    • 5 Zinc Oxide Nanostructures formed by Vapour Transport Processing 95 5.1 Vapour Transport Nanostructure Synthesis . . . . . . . . . . . . . . . 96 5.1.1 Carbothermal ZnO decomposition . . . . . . . . . . . . . . . . 97 5.1.2 Direct Zn Powder Evaporation . . . . . . . . . . . . . . . . . . 103 5.1.3 Morphology Control . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 XRD Analysis of the Crystal Structure of ZnO Nanorods Formed on a Ti Foil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3 Photoelectrochemical Tests . . . . . . . . . . . . . . . . . . . . . . . . 120 5.4 Thickness Controlled Rods and Photocurrents . . . . . . . . . . . . . 125 5.5 Growth of ZnO Structures in a KOH Rich Environment . . . . . . . . 128 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
    • 6 Zinc Oxide Nanotubes and Rods on Titanium Nanotubes 135 6.1 Material Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.1 Titanium Dioxide Nanotubes . . . . . . . . . . . . . . . . . . 137 6.1.2 Zinc Oxide Nanotubular Growth . . . . . . . . . . . . . . . . 138 Initial Zinc Oxide Growth inside Tubes . . . . . . . . . . . . . 138 6.1.3 Growth of a Zinc Oxide Nanotubular Structure on a Titanium Dioxide Nanotube Framework . . . . . . . . . . . . . . . . . . 140 6.2 XRD analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3 Photo-electrochemical Applications; the Splitting of Water . . . . . . 147 6.3.1 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 147 6.3.2 Photoelectrochemical Performance of Photoanodes under different Illumination Sources . . . . . . . . . . . . . . . . . . . . 147 Photoanode Performance under Xenon light source Illumination147 Photoanode Performance under Xenon Light Illumination with a UV Transmission Filter Fitted . . . . . . . . . . . 149 Photoanode Performance under Cold Cathode Fluorescent Light (CCFL) Illumination . . . . . . . . . . . . . . . . . . 151 Comparison of Various Photoanodes . . . . . . . . . . . . . . 152 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
    • [47] Alexander Volta and Joseph Banks. I. on the electricity excited by the mere contact of conducting substances of different kinds. The Philosophical Magazine: Comprehending the Various Branches of Science, the Liberal and Fine Arts, Agriculture, Manufactures, and Commerce, 7(28):289-311, 1800.
    • [48] AE Becquerel. M´emoire sur les effets ´electriques produits sous l'influence des rayons solaires. Comptes Rendus, 9(567):1839, 1839.
    • [50] Akira Fujishima. Electrochemical photolysis of water at a semiconductor electrode. nature, 238:37-38, 1972.
    • [51] Lionel Vayssieres. On solar hydrogen and nanotechnology. John Wiley & Sons, 2010.
    • [52] J. Augustyn`ski, B.D. Alexander, and R. Solarska. Metal oxide photoanodes for water splitting. In Carlo Alberto Bignozzi, editor, Photocatalysis, volume 303 of Topics in Current Chemistry, pages 1-38. Springer Berlin Heidelberg, 2011.
    • [53] Sergio Trasatti. Electrocatalysis by oxides - attempt at a unifying approach. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111(1):125-131, 1980.
    • [54] Y Matsumoto and E Sato. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials chemistry and physics, 14(5):397- 426, 1986.
    • [55] Susanta K Mohapatra, Mano Misra, Vishal K Mahajan, and Krishnan S Raja. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2-x C x nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. The Journal of Physical Chemistry C, 111(24):8677-8685, 2007.
    • [56] Gongming Wang, Hanyu Wang, Yichuan Ling, Yuechao Tang, Xunyu Yang, Robert C Fitzmorris, Changchun Wang, Jin Z Zhang, and Yat Li. Hydrogentreated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano letters, 11(7):3026-3033, 2011.
    • [57] Amy L Linsebigler, Guangquan Lu, and John T Yates Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3):735-758, 1995.
    • [58] R Dholam, N Patel, M Adami, and A Miotello. Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy, 34(13):5337-5346, 2009.
    • [59] Hideki Kato, Kiyotaka Asakura, and Akihiko Kudo. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society, 125(10):3082-3089, 2003.
    • [60] VM Aroutiounian, VM Arakelyan, and GE Shahnazaryan. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Solar Energy, 78(5):581-592, 2005.
    • [61] A Di Paola, E Garcıa-L´opez, S Ikeda, G Marcı, B Ohtani, and L Palmisano. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 75(1):87-93, 2002.
    • [62] K Gelderman, L Lee, and SW Donne. Flat-band potential of a semiconductor: using the mott-schottky equation. Journal of chemical education, 84(4):685, 2007.
    • [63] Radim Beranek. (photo) electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Advances in Physical Chemistry, 2011, 2012.
    • [64] Yasumichi Matsumoto. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. Journal of solid state chemistry, 126(2):227-234, 1996.
    • [65] CH Griffiths and HK Eastwood. Influence of stoichiometry on the metalsemiconductor transition in vanadium dioxide. Journal of Applied Physics, 45(5):2201-2206, 1974.
    • [66] LeRoy Eyring. Chemistry of non-stoichiometric compounds by k. kosuge. Journal of the American Chemical Society, 118(1):298-298, 1996.
    • [67] R. G. Rhodes. Oxide semiconductors by Z. M. Jarzebski. Acta Crystallographica Section A, 30(6):873, Nov 1974.
    • [68] Anlian Pan, Patricia L Nichols, and CZ Ning. Semiconductor alloy nanowires and nanobelts with tunable optical properties. Selected Topics in Quantum Electronics, IEEE Journal of, 17(4):808-818, 2011.
    • [69] Winfried M¨onch. Electronic properties of semiconductor interfaces, volume 43. Springer, 2004.
    • [70] Andreas Zu¨ttel, Andreas Borgschulte, and Louis Schlapbach. Hydrogen as a future energy carrier. Wiley. com, 2011.
    • [71] Ghazi A Karim. Hydrogen as a spark ignition engine fuel. International Journal of Hydrogen Energy, 28(5):569-577, 2003.
    • [72] Carl-Jochen Winter and Joachim Nitsch. Hydrogen as an energy carrier. 1988.
    • [73] I.P. Jain. Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34(17):7368 - 7378, 2009.
    • [74] DK Ross. Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 80(10):1084-1089, 2006.
    • [75] Jamie D Holladay, Jianli Hu, David L King, and Yong Wang. An overview of hydrogen production technologies. Catalysis Today, 139(4):244-260, 2009.
    • [76] Jianguo Xu and Gilbert F Froment. Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics. AIChE Journal, 35(1):88-96, 1989.
    • [77] Agus Haryanto, Sandun Fernando, Naveen Murali, and Sushil Adhikari. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy & Fuels, 19(5):2098-2106, 2005.
    • [78] K Vasudeva, N Mitra, P Umasankar, and SC Dhingra. Steam reforming of ethanol for hydrogen production: thermodynamic analysis. International Journal of Hydrogen Energy, 21(1):13-18, 1996.
    • [79] Dimitris K Liguras, Dimitris I Kondarides, and Xenophon E Verykios. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4):345-354, 2003.
    • [80] Pamela L Spath and Margaret K Mann. Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory Golden, CO, 2000.
    • [81] R Pitchai and K Klier. Partial oxidation of methane. Catalysis ReviewsâĂŤScience and Engineering, 28(1):13-88, 1986.
    • [82] AT Ashcroft, AK Cheetham, and MrnLH Green. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 352(6332):225-226, 1991.
    • [83] Patrick DF Vernon, Malcolm LH Green, Anthony K Cheetham, and Alexander T Ashcroft. Partial oxidation of methane to synthesis gas. Catalysis Letters, 6(2):181-186, 1990.
    • [84] PJ Dauenhauer, JR Salge, and LD Schmidt. Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. Journal of Catalysis, 244(2):238-247, 2006.
    • [85] S Ayabe, H Omoto, T Utaka, R Kikuchi, K Sasaki, Y Teraoka, and K Eguchi. Catalytic autothermal reforming of methane and propane over supported metal catalysts. Applied Catalysis A: General, 241(1):261-269, 2003.
    • [86] TS Christensen and II Primdahl. Improve syngas production using autothermal reforming. Hydrocarbon Processing;(United States), 73(3), 1994.
    • [87] GA Deluga, JR Salge, LD Schmidt, and XE Verykios. Renewable hydrogen from ethanol by autothermal reforming. Science, 303(5660):993-997, 2004.
    • [88] Harry Perry. Gasification of coal. Sci. Amer., v. 230, no. 3, pp. 19-25, 230(3), 1973.
    • [89] Shiying Lin, Michiaki Harada, Yoshizo Suzuki, and Hiroyuki Hatano. Hydrogen production from coal by separating carbon dioxide during gasification. Fuel, 81(16):2079-2085, 2002.
    • [90] William B Hauserman. High-yield hydrogen production by catalytic gasification of coal or biomass. International journal of hydrogen energy, 19(5):413- 419, 1994.
    • [91] Calin-Cristian Cormos, Fred Starr, Evangelos Tzimas, and Stathis Peteves. Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture. International Journal of Hydrogen Energy, 33(4):1286- 1294, 2008.
    • [92] Robert W Coughlin and Mohammad Farooque. Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons. Industrial & Engineering Chemistry Process Design and Development, 19(2):211-219, 1980.
    • [93] Lorna Jeffery Minggu, Wan Ramli Wan Daud, and Mohammad B Kassim. An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 35(11):5233-5244, 2010.
    • [94] A. Djafour, M. Matoug, H. Bouras, B. Bouchekima, M.S. Aida, and B. Azoui. Photovoltaic-assisted alkaline water electrolysis: Basic principles. International Journal of Hydrogen Energy, 36(6):4117 - 4124, 2011.
    • [95] Bojan Tamburic, Fessehaye W. Zemichael, Geoffrey C. Maitland, and Klaus Hellgardt. A novel nutrient control method to deprive green algae of sulphur and initiate spontaneous hydrogen production. International Journal of Hydrogen Energy, 37(11):8988 - 9001, 2012.
    • [96] C.M. Perkins and University of Colorado at Boulder. Solar Thermal Decomposition of Zinc Oxide in Aerosol Flow for Renewable Hydrogen Production. University of Colorado at Boulder, 2006.
    • [97] Oscar Khaselev and John A Turner. A monolithic photovoltaic - photoelectrochemical device for hydrogen production via water splitting. Science, 280(5362):425-427, 1998.
    • [98] Ida Akkerman, Marcel Janssen, Jorge Rocha, and Ren´e H Wijffels. Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27(11):1195-1208, 2002.
    • [99] Paul F Weaver, Stephen Lien, and Michael Seibert. Photobiological production of hydrogen. Solar Energy, 24(1):3-45, 1980.
    • [100] Debajeet K. Bora, Elena A. Rozhkova, Krisztina Schrantz, Pradeep P. Wyss, Artur Braun, Thomas Graule, and Edwin C. Constable. Functionalization of nanostructured hematite thin-film electrodes with the light-harvesting membrane protein c-phycocyanin yields an enhanced photocurrent. Advanced Functional Materials, 22(3):490-502, 2012.
    • [101] Hiroaki Tagawa and Takayuki Endo. Catalytic decomposition of sulfuric acid using metal oxides as the oxygen generating reaction in thermochemical water splitting process. International journal of hydrogen energy, 14(1):11-17, 1989.
    • [102] CE Bamberger. Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics, 18(3):170-183, 1978.
    • [103] Marc A Rosen. Advances in hydrogen production by thermochemical water decomposition: a review. Energy, 35(2):1068-1076, 2010.
    • [104] E Bilgen, M Ducarroir, M Foex, F Sibieude, and F Trombe. Use of solar energy for direct and two-step water decomposition cycles. International Journal of Hydrogen Energy, 2(3):251-257, 1977.
    • [105] Patrice Charvin, Stephane Abanades, Gilles Flamant, and Florent Lemort. Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy, 32(7):1124-1133, 2007.
    • [106] Yumiko Nakamuro and Takayuki Mizuno. A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. Journal of solar energy engineering, 128:3, 2006.
    • [107] M H¨anchen, A Stiel, ZR Jovanovic, and A Steinfeld. Thermally driven copper oxide redox cycle for the separation of oxygen from gases. Industrial & Engineering Chemistry Research, 51(20):7013-7021, 2012.
    • [108] A Steinfeld. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. International Journal of Hydrogen Energy, 27(6):611-619, 2002.
    • [109] Karsten Wegner, Hao C Ly, Rodrigo J Weiss, Sotiris E Pratsinis, and Aldo Steinfeld. In situ formation and hydrolysis of Zn nanoparticles for H2 production by the 2-step ZnO/Zn water-splitting thermochemical cycle. International Journal of Hydrogen Energy, 31(1):55-61, 2006.
    • [110] A Weidenkaff, AW Reller, A Wokaun, and A Steinfeld. Thermogravimetric analysis of the zno/zn water splitting cycle. Thermochimica Acta, 359(1):69- 75, 2000.
    • [111] RK Ahluwalia, TQ Hua, and JK Peng. On-board and off-board performance of hydrogen storage options for light-duty vehicles. International Journal of Hydrogen Energy, 37(3):2891-2910, 2012.
    • [112] Gavin Walker. Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, 2008.
    • [113] Tuan KA Hoang and David M Antonelli. Exploiting the kubas interaction in the design of hydrogen storage materials. Advanced Materials, 21(18):1787- 1800, 2009.
    • [114] Georgios K Dimitrakakis, Emmanuel Tylianakis, and George E Froudakis. Pillared graphene: a new 3-d network nanostructure for enhanced hydrogen storage. Nano letters, 8(10):3166-3170, 2008.
    • [115] Mashkoor Ahmad, Caofeng Pan, and Jing Zhu. Investigation of hydrogen storage capabilities of ZnO-based nanostructures. The Journal of Physical Chemistry C, 114(6):2560-2565, 2010.
    • [116] Ping Chen, Zhitao Xiong, Jizhong Luo, Jianyi Lin, and Kuang Lee Tan. Interaction of hydrogen with metal nitrides and imides. Nature, 420(6913):302-304, 2002.
    • [117] Hoonkyung Lee, Woon Ih Choi, and Jisoon Ihm. Combinatorial search for optimal hydrogen-storage nanomaterials based on polymers. Physical review letters, 97(5):056104, 2006.
    • [118] Ki-Joon Jeon, Hoi Ri Moon, Anne M Ruminski, Bin Jiang, Christian Kisielowski, Rizia Bardhan, and Jeffrey J Urban. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nature Materials, 10(4):286-290, 2011.
    • [120] A John Appleby. Fuel cell handbook. 1988.
    • [121] Xuan Cheng, Zheng Shi, Nancy Glass, Lu Zhang, Jiujun Zhang, Datong Song, Zhong-Sheng Liu, Haijiang Wang, and Jun Shen. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources, 165(2):739-756, 2007.
    • [122] Lee F Brown. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4):381-397, 2001.
    • [123] SC Singhal. Advances in solid oxide fuel cell technology. Solid state ionics, 135(1):305-313, 2000.
    • [124] Hans-Heinrich M¨obius. On the history of solid electrolyte fuel cells. Journal of solid state electrochemistry, 1(1):2-16, 1997.
    • [125] P Padma Kumar and S Yashonath. Ionic conduction in the solid state. Journal of Chemical Sciences, 118(1):135-154, 2006.
    • [126] Thomas E Springer, TA Zawodzinski, and Shimshon Gottesfeld. Polymer electrolyte fuel cell model. Journal of the Electrochemical Society, 138(8):2334- 2342, 1991.
    • [127] E Warburg. Sodium ions migration through glass. Wiedemann Ann, Phys, 21:622-24, 1884.
    • [128] Peter G Bruce. Solid state electrochemistry, volume 5. Cambridge University Press, 1997.
    • [129] Walther Nernst. Material for electric-lamp glowers, 1901. US Patent 685,730.
    • [130] Brian CH Steele and Angelika Heinzel. Materials for fuel-cell technologies. Nature, 414(6861):345-352, 2001.
    • [131] Akira Endo, Manabu Ihara, Hiroshi Komiyama, and Koichi Yamada. Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes. Solid State Ionics, 86:1191-1195, 1996.
    • [132] San Ping Jiang. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, 43:6799-6833, 2008.
    • [133] Max Knoll and Ernst Ruska. Das elektronenmikroskop. Zeitschrift fu¨r physik, 78(5-6):318-339, 1932.
    • [134] Conyers Herring and MH Nichols. Thermionic emission. Reviews of Modern Physics, 21(2):185, 1949.
    • [135] TE Everhart and RFM Thornley. Wide-band detector for micro-microampere low-energy electron currents. Journal of scientific instruments, 37(7):246, 1960.
    • [136] WH Zachariasen. A general theory of x-ray diffraction in crystals. Acta Crystallographica, 23(4):558-564, 1967.
    • [137] WH Bragg. The x-ray spectra given by crystals of sulphur and quartz. Proceedings of the Royal Society of London. Series A, 89(614):575-580, 1914.
    • [138] Marcin Wojdyr. Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43(5 Part 1):1126-1128, Oct 2010.
    • [139] P Scherrer. Bestimmung der gr¨osse und der inneren struktur von kolloidteilchen mittels ro¨ntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, mathematisch-physikalische Klasse, 1918:98- 100, 1918.
    • [140] Carl H. Bates, William B. White, and Rustum Roy. New high-pressure polymorph of zinc oxide. Science, 137(3534):993, 1962.
    • [141] J Reichman. The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells. Applied Physics Letters, 36(7):574-577, 1980.
    • [142] LM Peter, J Li, and R Peat. Surface recombination at semiconductor electrodes: Part i. transient and steady-state photocurrents. Journal of electroanalytical chemistry and interfacial electrochemistry, 165(1):29-40, 1984.
    • [143] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, and J. A. Glasscock. Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 31(14):1999- 2017, 2006.
    • [144] Heinrich Hertz. On the evaporation of liquids, especially of mercury, in a vacuum. Ann. Phys, 17:178-193, 1882.
    • [145] Martin Knudsen. The kinetic theory of gases: some modern aspects. Methuen London, 1934.
    • [146] I. Langmuir. The Vapor Pressure of Metallic Tungsten. Physical Review, 2:329-342, November 1913.
    • [147] Saul Dushman. Scientific foundations of vacuum technique. Wiley New York, 1949.
    • [148] KL Choy. Chemical vapour deposition of coatings. Progress in materials science, 48(2):57-170, 2003.
    • [149] Hari Singh Nalwa. Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set, volume 3. Academic Press, 1999.
    • [150] Jia Grace Lu, Paichun Chang, and Zhiyong Fan. Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications. Materials Science and Engineering: R: Reports, 52(1):49-91, 2006.
    • [151] RS Wagner and WC Ellis. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 4(5):89-90, 1964.
    • [152] Xinyong Tao, Jun Du, Yingchao Yang, Yiping Li, Yang Xia, Yongping Gan, Hui Huang, Wenkui Zhang, and Xiaodong Li. TiC nanorods derived from cotton fibers: Chloride-assisted VLS growth, structure, and mechanical properties. Crystal Growth & Design, 11(10):4422-4426, 2011.
    • [153] S Kodambaka, J Tersoff, MC Reuter, and FM Ross. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Physical review letters, 96(9):096105, 2006.
    • [154] CL Hsin, JH He, CY Lee, WW Wu, PH Yeh, LJ Chen, and ZL Wang. Lateral self-aligned p-type In2O3 nanowire arrays epitaxially grown on Si substrates. Nano letters, 7(6):1799-1803, 2007.
    • [155] Kazuki Nagashima, Takeshi Yanagida, Hidekazu Tanaka, and Tomoji Kawai. Control of magnesium oxide nanowire morphologies by ambient temperature. Applied physics letters, 90(23):233103-233103, 2007.
    • [156] Jonathon Milam, Lincoln Lauhon, and Jonathan Allen. Photoconductivity of semiconducting CdS nanowires. Northwestern University, pages 43-47, 2005.
    • [157] Jung-Chul Lee, Wonjoo Lee, Sung-Hwan Han, Tae Geun Kim, and Yun-Mo Sung. Synthesis of hybrid solar cells using CdS nanowire array grown on conductive glass substrates. Electrochemistry Communications, 11(1):231-234, 2009.
    • [158] Bin Zhang, Yeonwoong Jung, Hee-Suk Chung, Lambert Van Vugt, and Ritesh Agarwal. Nanowire transformation by size-dependent cation exchange reactions. Nano letters, 10(1):149-155, 2009.
    • [159] Carl J Barrelet, Yue Wu, David C Bell, and Charles M Lieber. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society, 125(38):11498-11499, 2003.
    • [160] Jyh-Ming Wu, Han C Shih, Wen-Ti Wu, Yung-Kuan Tseng, I Chen, et al. Thermal evaporation growth and the luminescence property of TiO2 nanowires. Journal of crystal Growth, 281(2):384-390, 2005.
    • [161] Volker Schmidt and Ulrich G¨osele. How nanowires grow. Science(Washington), 316(5825):698-699, 2007.
    • [162] Hongzhou Zhang, Xuhui Luo, Jun Xu, Bin Xiang, and Dapeng Yu. Synthesis of TiO2/SiO2 core/shell nanocable arrays. The Journal of Physical Chemistry B, 108(39):14866-14869, 2004.
    • [163] George Biskos, Vincent Vons, Caner U Yurteri, and Andreas Schmidt-Ott. Generation and sizing of particles for aerosol-based nanotechnology. KONA Powder Particle J, 26:13-35, 2008.
    • [166] B Krause, M Ritschel, Ch T¨aschner, S Oswald, W Gruner, A Leonhardt, and P P¨otschke. Comparison of nanotubes produced by fixed bed and aerosol-CVD methods and their electrical percolation behaviour in melt mixed polyamide 6.6 composites. Composites Science and Technology, 70(1):151-160, 2010.
    • [167] Colin R Crick and Ivan P Parkin. Superhydrophobic polymer films via aerosol assisted deposition - Taking a leaf out of nature's book. Thin Solid Films, 518(15):4328-4335, 2010.
    • [168] Sheng Xu and Zhong Lin Wang. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Research, 4(11):1013-1098, 2011.
    • [169] Lionel Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 15(5):464-466, 2003.
    • [170] Xiaobo Chen and Samuel S Mao. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(LBNL59769), 2007.
    • [171] Vishal K. Mahajan, Susanta K. Mohapatra, and Mano Misra. Stability of TiO2 nanotube arrays in photoelectrochemical studies. International Journal of Hydrogen Energy, 33(20):5369 - 5374, 2008.
    • [172] Meng Ni, Michael KH Leung, Dennis YC Leung, and K Sumathy. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3):401-425, 2007.
    • [173] PVV Jayaweera, AGU Perera, and K Tennakone. Why gratzel's cell works so well. Inorganica Chimica Acta, 361(3):707-711, 2008.
    • [174] Zhonghai Zhang, Md Faruk Hossain, and Takakazu Takahashi. Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. International journal of hydrogen energy, 35(16):8528-8535, 2010.
    • [175] Zhaoyue Liu, Batric Pesic, Krishnan S Raja, Raghu R Rangaraju, and Mano Misra. Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. International Journal of Hydrogen Energy, 34(8):3250-3257, 2009.
    • [176] Karthik Shankar, James I Basham, Nageh K Allam, Oomman K Varghese, Gopal K Mor, Xinjian Feng, Maggie Paulose, Jason A Seabold, Kyoung-Shin Choi, and Craig A Grimes. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. The Journal of Physical Chemistry C, 113(16):6327-6359, 2009.
    • [177] Jong Hyeok Park, Sungwook Kim, and Allen J Bard. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano letters, 6(1):24-28, 2006.
    • [178] Chengkun Xu and Shahed UM Khan. Photoresponse of visible light active Carbon-Modified-n-TiO2 thin films. Electrochemical and solid-state letters, 10(3):B56-B59, 2007.
    • [179] Rajesh Sharma, Prajna P Das, Mano Misra, Vishal Mahajan, Jacob P Bock, Steve Trigwell, Alexandru S Biris, and Malay K Mazumder. Enhancement of the photoelectrochemical conversion efficiency of nanotubular TiO2 photoanodes using nitrogen plasma assisted surface modification. Nanotechnology, 20(7):075704, 2009.
    • [187] Susanta K Mohapatra, Subarna Banerjee, and Mano Misra. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe. Nanotechnology, 19(31):315601, 2008.
    • [188] ST Hussain and A Siddiqa. Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants. International Journal of Environment Science and Technology, 8(2):351-362, 2011.
    • [189] Zainab T. Y. Al-Abdullah, Yuyoung Shin, Rantej Kler, Christopher C. Perry, Wuzong Zhou, and Qiao Chen. The influence of hydroxide on the initial stages of anodic growth of tio2 nanotubular arrays. Nanotechnology, 21(50), 2010.
    • [190] Yoshikazu Suzuki and Susumu Yoshikawa. Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. Journal of materials research, 19(4):982-985, 2004.
    • [191] P Davide Cozzoli, Andreas Kornowski, and Horst Weller. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. Journal of the American Chemical Society, 125(47):14539-14548, 2003.
    • [192] Seong Mu Jo, Mi Yeon Song, Young Rack Ahn, Chong Rae Park, and Dong Young Kim. Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 42(11):1529-1540, 2005.
    • [193] Surawut Chuangchote, Jaturong Jitputti, Takashi Sagawa, and Susumu Yoshikawa. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Applied Materials & Interfaces, 1(5):1140-1143, 2009.
    • [194] Jyh-Ming Wu, Han C Shih, and Wen-Ti Wu. Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation. Chemical physics letters, 413(4):490-494, 2005.
    • [195] Dongjiang Yang, Hongwei Liu, Zhanfeng Zheng, Yong Yuan, Jin-cai Zhao, Eric R Waclawik, Xuebin Ke, and Huaiyong Zhu. An efficient photocatalyst structure: TiO2 (b) nanofibers with a shell of anatase nanocrystals. Journal of the American Chemical Society, 131(49):17885-17893, 2009.
    • [196] Jih-Jen Wu and Chi-Chung Yu. Aligned TiO2 nanorods and nanowalls. The Journal of Physical Chemistry B, 108(11):3377-3379, 2004.
    • [197] C Tekmen, A Suslu, and U Cocen. Titania nanofibers prepared by electrospinning. Materials Letters, 62(29):4470-4472, 2008.
    • [198] S Sreekantan, LM Hung, Z Lockman, ZA Ahmad, and AF Mohd Noor. The synthesis and characterization of titania nanotubes formed at various anodisation time. In AIP Conference Proceedings, volume 989, page 155, 2008.
    • [199] Xiaofeng Yu, Yongxiang Li, Wojtek Wlodarski, Sasikaran Kandasamy, and Kourosh Kalantar-Zadeh. Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. Sensors and Actuators B: Chemical, 130(1):25-31, 2008.
    • [200] Gopal K Mor, Karthik Shankar, Maggie Paulose, Oomman K Varghese, and Craig A Grimes. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano letters, 6(2):215-218, 2006.
    • [201] Beata Chertok, Bradford A Moffat, Allan E David, Faquan Yu, Christian Bergemann, Brian D Ross, and Victor C Yang. Iron oxide nanoparticles as a drug delivery vehicle for mri monitored magnetic targeting of brain tumors. Biomaterials, 29(4):487-496, 2008.
    • [202] Michael J Potter. Iron oxide pigments. Journal, v, 78(32):43-46, 1994.
    • [203] Chun-Jiang Jia, Ling-Dong Sun, Zheng-Guang Yan, Li-Ping You, Feng Luo, Xiao-Dong Han, Yu-Cheng Pang, Ze Zhang, and Chun-Hua Yan. Singlecrystalline iron oxide nanotubes. Angewandte Chemie, 117(28):4402-4407, 2005.
    • [204] Lu Liu, Hui-Zhong Kou, Wenling Mo, Huajie Liu, and Yuqiu Wang. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shapedependent magnetic properties. The Journal of Physical Chemistry B, 110(31):15218-15223, 2006.
    • [209] Haripriya E Prakasam, Oomman K Varghese, Maggie Paulose, Gopal K Mor, and Craig A Grimes. Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology, 17(17):4285, 2006.
    • [210] Susanta K Mohapatra, Shiny E John, Subarna Banerjee, and Mano Misra. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chemistry of Materials, 21(14):3048-3055, 2009.
    • [211] Raghu R Rangaraju, KS Raja, A Panday, and M Misra. An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron. Electrochimica Acta, 55(3):785-793, 2010.
    • [212] Yu-Xin Tang, Jie Tao, Yan-Yan Zhang, Tao Wu, Hai-Jun Tao, and Ya-Rong Zhu. Preparation of TiO2 nanotube on glass by anodization of Ti films at room temperature. Transactions of Nonferrous Metals Society of China, 19(1):192- 198, 2009.
    • [220] Chien-Yuan Lu, Sheng-Po Chang, Shoou-Jinn Chang, Ting-Jen Hsueh, ChengLiang Hsu, Yu-Zung Chiou, and I-Cherng Chen. ZnO nanowire-based oxygen gas sensor. Sensors Journal, IEEE, 9(4):485-489, 2009.
    • [221] P Mitra and AK Mukhopadhyay. ZnO thin film as methane sensor. Bulletin of the Polish Academy of Sciences: Technical Sciences, 55(3):281-285, 2007.
    • [222] Q Ahsanulhaq, JH Kim, JS Lee, and YB Hahn. Electrical and gas sensing properties of ZnO nanorod arrays directly grown on a four-probe electrode system. Electrochemistry Communications, 12(3):475-478, 2010.
    • [240] C.C Tang, S.S Fan, Marc Lamy de la Chapelle, and P Li. Silica-assisted catalytic growth of oxide and nitride nanowires. Chemical Physics Letters, 333(1âĂŞ2):12 - 15, 2001.
    • [241] JX Wang, Xiao Wei Sun, A Wei, Y Lei, XP Cai, Chang Ming Li, and ZL Dong. Zinc oxide nanocomb biosensor for glucose detection. Applied physics letters, 88(23):233106-233106, 2006.
    • [242] Yaohua Zhang, Xubo Song, Jie Zheng, Haihua Liu, Xingguo Li, and Liping You. Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties. Nanotechnology, 17(8):1916, 2006.
    • [251] JS Tawale, KK Dey, R Pasricha, KN Sood, and AK Srivastava. Synthesis and characterization of ZnO tetrapods for optical and antibacterial applications. Thin Solid Films, 519(3):1244-1247, 2010.
    • [252] D Calestani, M Zha, R Mosca, A Zappettini, MC Carotta, V Di Natale, and L Zanotti. Growth of ZnO tetrapods for nanostructure-based gas sensors. Sensors and Actuators B: Chemical, 144(2):472-478, 2010.
    • [253] Jing Yu Lao, Jian Guo Wen, and Zhi Feng Ren. Hierarchical ZnO nanostructures. Nano Letters, 2(11):1287-1291, 2002.
    • [255] C.J Youn, T.S Jeong, M.S Han, and J.H Kim. Optical properties of Znterminated ZnO bulk. Journal of Crystal Growth, 261(4):526 - 532, 2004.
    • [262] Swee-Yong Pung, Kwang-Leong Choy, Xianghui Hou, and Keith Dinsdale. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition. Nanotechnology, 21(34):345602, 2010.
    • [263] Hao Ming Chen, Chih Kai Chen, Yu-Chuan Chang, Chi-Wen Tsai, Ru-Shi Liu, Shu-Fen Hu, Wen-Sheng Chang, and Kuei-Hsien Chen. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angewandte Chemie, 122(34):6102-6105, 2010.
    • [271] Gul Amin, MO Sandberg, Ahmed Zainelabdin, Siama Zaman, Omer Nur, and Magnus Willander. Scale-up synthesis of ZnO nanorods for printing inexpensive zno/polymer white light-emitting diode. Journal of Materials Science, 47(11):4726-4731, 2012.
    • [272] M. Andres Verges, A. Mifsud, and C. J. Serna. Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J. Chem. Soc., Faraday Trans., 86:959-963, 1990.
    • [282] Yueh-Feng Li, Yu-Jane Sheng, and Heng-Kwong Tsao. Evaporation stains: Suppressing the coffee-ring effect by contact angle hysteresis. Langmuir, 29(25):7802-7811, 2013.
    • [283] A.E. Morales, E.S. Mora, and U. Pal. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S, 53(5):18, 2007.
    • [284] Yasumichi Matsumoto, Masaru Omae, Itsuo Watanabe, and Ei-ichi Sato. Photoelectrochemical properties of the Zn-Ti-Fe spinel oxides. Journal of The Electrochemical Society, 133(4):711-716, 1986.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    47
    47%
  • No similar publications.

Share - Bookmark

Download from

Cite this article