LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zupan, Zorana
Languages: English
Types: Doctoral thesis
Subjects: BF
Attention plays an integral role in healthy cognitive functioning, and failures of attention can lead to unfavourable and dangerous consequences. As such, comprehending the nature of attentional mechanisms is of fundamental theoretical and practical importance. One way in which humans can attentionally prioritise new information is through top-down inhibition of old distractors, known as the preview benefit (Watson & Humphreys, 1997). In the preview benefit, time is used to efficiently guide visual selection in space. Given that this ability is based on limited resources, its deployment in everyday life may be hindered by a multitude of factors. This thesis will explore the endogenous and exogenous factors that can facilitate or constrain the preview benefit, and determine its developmental trajectory.\ud Understanding the nature of this mechanism (endogenous and exogenous factors) in adults can elucidate the contexts in which visual selection can efficiently filter old distractors. In turn, a developmental perspective can unravel the hidden aspects of this ability and inform when children are endowed to use temporal information for efficient attentional selection. Chapter 1 introduces the theoretical problems and topics of attentional research in adults and children. Chapter 2 addresses the question of endogenous control of top-down inhibition in time-based visual selection – when can top-down inhibition be controlled by the observer? Chapter 3 examines the exogenous influence of complex stimuli on time-based visual selection. Chapters 4 and 5 focus on the development of time-based visual selection for stationary and moving stimuli, respectively, in children aged 6 to 12 years. These chapters also examine the relative association of the efficiency of the preview benefit with the development of executive functions across different age-groups. Overall, the findings suggest that there exist remarkable endogenous and exogenous constraints in how time guides selection. This may account for why in certain contexts, attentional selection can fail to be efficient. Moreover, time-based visual selection shows striking quantitative and qualitative changes over developmental time, and most importantly, children have a long developmental trajectory in learning to ignore moving items. Unlike children, adults’ time-based visual selection is coupled with individual differences in executive functions, highlighting an acquired functional connection. The findings are discussed in terms of their theoretical implications for time-based visual selection, the development of children’s attentional control for distractors, and impact routes for educational and clinical practice, and policy makers.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Zupan, Z., Blagrove, E., & Watson, D.G. (May, 2014). Developing time-based visual selection: The preview task in children. Poster presented at the 13th annual meeting of the Visual Sciences Society (VSS), St. Pete Beach, Florida Zupan, Z., Blagrove, E., & Watson, D.G. (November, 2013). To inhibit or not to inhibit? Strategies in time-based selection. Poster presented at the 54th annual meeting of the Psychonomic society, Toronto, ON, Canada Folk, C., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044.
    • Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20, 317-329.
    • Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65, 999-1010.
    • Franconeri, S. L., & Simons, D. J. (2005). The dynamic events that capture visual attention: A reply to Abrams and Christ (2005). Perception & Psychophysics, 67, 962-966.
    • Geyer, T., Müller, H. J., & Krummenacher, J. (2006). Cross-trial priming in visual search for singleton conjunction targets: Role of repeated target and distractor features. Perception & Psychophysics, 68, 736-749.
    • Gibson, B. S., & Jiang, Y. (2001). Visual marking and the perception of salience in visual search. Perception & Psychophysics, 63, 59-73.
    • Grabowecky, M., & Treisman, A. (1989). Attention and fixation in subjective contour perception. Investigative Ophthalmology & Visual Science, 30, 457.
    • Gray, J. A., & Wedderburn, A. A. I. (1960). Shorter articles and notes grouping strategies with simultaneous stimuli. Quarterly Journal of Experimental Psychology, 12, 180-184.
    • Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception and Performance, 32, 1465-1478.
    • Grison, S., Tipper, S. P., & Hewitt, O. (2005). Long-term negative priming: Support for retrieval of prior attentional processes. The Quarterly Journal of Experimental Psychology, 58, 1199-1224.
    • Harnishfeger, K. K., & Bjorklund, D. F. (1993). The ontogeny of inhibition mechanisms: A renewed approach to cognitive development. In M. L. Howe & R. Pasnak (Eds.), Emerging themes in cognitive development (pp. 28-49). New York: Springer-Verlag.
    • Hassin, R. R. (2013). Yes it can on the functional abilities of the human unconscious. Perspectives on Psychological Science, 8, 195-207.
    • Hassin, R. R., Bargh, J. A., Engell, A. D., & McCulloch, K. C. (2009). Implicit working memory. Consciousness and Cognition, 18, 665-678.
    • He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334-337.
    • Herrero, J. L., Crawley, R., van Leeuwen, C., & Raffone, A. (2007). Visual marking and change detection. Cognitive Processing, 8, 233-244.
    • Hillstrom, A. P., & Yantis, S. (1994). Visual motion and attentional capture. Perception & Psychophysics, 55, 399-411.
    • Hodsoll, J. P., & Humphreys, G. W. (2005). Preview search and contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 31, 1346 - 1358.
    • Horstmann, G., & Becker, S. I. (2008). Attentional effects of negative faces: Top-down contingent or involuntary? Perception & Psychophysics, 70, 1416-1434.
    • Hommel, B., Li, K. Z., & Li, S. C. (2004). Visual search across the life span. Developmental Psychology, 40, 545-558.
    • Hood, B. M. (1993). Inhibition of return produced by covert shifts of visual attention in 6-month-old infants. Infant Behavior and Development, 16, 245-254.
    • Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. Carr (Eds.), Inhibitory processes in attention, memory, and language. San Diego, CA: Academic Press.
    • Hughes, C., Ensor, R., Wilson, A., & Graham, A. (2009). Tracking executive function across the transition to school: A latent variable approach. Developmental Neuropsychology, 35, 20-36.
    • Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 2017-2036.
    • Humphreys, G. W., Watson, D. G., & Jolicoeur, P. (2002). Fractionating the preview benefit in search: Dual task decomposition of visual marking by timing and modality. Journal of Experimental Psychology: Human Perception and Performance, 28, 640-660.
    • Humphreys, G. W., Stalmann, B. J., & Olivers, C. (2004). An analysis of the time course of attention in preview search. Perception & Psychophysics, 66, 713- 730.
    • Humphreys, G. W., & Müller, H. J. (1993). SEarch via Recursive Rejection (SERR): A connectionist model of visual search. Cognitive Psychology, 25, 43-110.
    • Jack, A. I., & Shallice, T. (2001). Introspective physicalism as an approach to the science of consciousness. Cognition, 79, 161-196.
    • Jackson, M. C., Linden, D. E., Roberts, M. V., Kriegeskorte, N., & Haenschel, C. (2015). Similarity, Not Complexity, Determines Visual Working Memory Performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1884-1892.
    • Jacobsen, T., Humphreys, G. W., Schröger, E., & Roeber, U. (2002). Visual marking for search: behavioral and event-related potential analyses. Cognitive Brain Research, 14, 410-421.
    • Jakobsen, K. V., Frick, J. E., & Simpson, E. A. (2013). Look here! The development of attentional orienting to symbolic cues. Journal of Cognition and Development, 14, 229-249.
    • Jiang, Y., Chun, M. M., & Marks, L. E. (2002a). Visual marking: Selective attention to asynchronous temporal groups. Journal of Experimental Psychology: Human Perception & Performance, 28, 717-730.
    • Jiang, Y., Chun, M. M., & Marks, L. E. (2002b). Visual marking: Dissociating effects of new and old set size. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 293-302.
    • Johnston, W. A., & Heinz, S. P. (1978). Flexibility and capacity demands of attention. Journal of Experimental Psychology: General, 107, 420-435.
    • Johnson, M. H., Posner, M., & Rothbart, M. K. (1991). Components of visual orienting in early infancy: Contingency learning, anticipatory looking, and disengaging. Journal of Cognitive Neuroscience, 3, 335-344.
    • Jordan, H., & Tipper, S. P. (1999). Spread of inhibition across an object's surface. British Journal of Psychology, 90, 495-507.
    • Johnson, M. H., & Tucker, L. A. (1996). The development and temporal dynamics of spatial orienting in infants. Journal of Experimental Child Psychology, 63, 171- 188.
    • Karama, S., Bastin, M. E., Murray, C., Royle, N. A., Penke, L., Maniega, S. M., ... & Deary, I. J. (2014). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19, 555-559.
    • Karmiloff‐Smith, A. (1997). Crucial differences between developmental cognitive neuroscience and adult neuropsychology. Developmental Neuropsychology, 13, 513-524.
    • Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389-398.
    • Karmiloff-Smith, A. (2009). Nativism versus neuroconstructivism: rethinking the study of developmental disorders. Developmental psychology, 45, 56-63.
    • Kanwisher, N. G. (1987). Repetition blindness: Type recognition without token individuation. Cognition, 27, 117-143.
    • Kanwisher, N., & Driver, J. (1992). Objects, Attributes, and Visual Attention: Which, What, and Where. Current Directions in Psychological Science, 1, 26-31.
    • Kaufman, E.L., Lord, M.W., Reese, T.W., & Volkmann, J., (1949). The discrimination of visual number. The American Journal of Psychology, 62, 498-525.
    • Kimchi, R., & Peterson, M. A. (2008). Figure-ground segmentation can occur without attention. Psychological Science, 19, 660-668.
    • Kimchi, R., & Razpurker-Apfeld, I. (2004). Perceptual grouping and attention: Not all groupings are equal. Psychonomic Bulletin & Review, 11, 687-696.
    • Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430- 431.
    • Klenberg, L., Korkman, M., & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3-to 12-year-old Finnish children. Developmental Neuropsychology, 20, 407-428.
    • Koffka, K. (1935). Principles of Gestalt Psychology. New York: Harcourt, Brace & World
    • Kramer, A. F., & Atchley, P. (2000). Age-related effects in the marking of old objects in visual search. Psychology and Aging, 15, 286-296.
    • Kunar, M. A., Humphreys, G. W., & Smith, K. J. (2003a). History Matters The Preview Benefit in Search Is Not Onset Capture. Psychological Science, 14, 181-185.
    • Kunar, M. A., Humphreys, G. W., & Smith, K. J. (2003b). Visual change with moving displays: more evidence for color feature map inhibition during preview search. Journal of Experimental Psychology: Human Perception and Performance, 29, 779- 792.
    • Kunar, M. A., Humphreys, G. W., Smith, K. J., & Hulleman, J. (2003). What is “marked” in visual marking? Evidence for effects of configuration in preview search. Perception & Psychophysics, 65, 982-996.
    • LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9, 371-379.
    • LaBerge, D., & Brown, V. (1989). Theory of attentional operations in shape identification. Psychological Review, 96, 101-124
    • Lamy, D., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48, 30-41.
    • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-468.
    • Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in cognitive sciences, 9, 75-82.
    • Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.Leber, A. B., & Egeth, H. E. (2006). Attention on autopilot: Past experience and attentional set. Visual Cognition, 14, 565-583.
    • Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 59-80.
    • Li, X., Cave, K. R., & Wolfe, J. M. (2008). Kanizsa-type subjective contours do not guide attentional deployment in visual search but line termination contours do. Perception & Psychophysics, 70, 477-488.
    • Logan, G. D. (1996). The CODE theory of visual attention: an integration of spacebased and object-based attention. Psychological Review, 103, 603- 649.
    • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.
    • Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell'Acqua, R. (2010). Visual shortterm memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22, 496-512.
    • Neisser, U. (1967). Cognitive Psychology. New York: Appleton Mack, A., & Rock, I. (1998). Inattentional blindness: Perception without attention. Visual Attention, 8, 55-76.
    • McLeod, P., Driver, J., & Crisp, J. (1988). Visual search for a conjunction of movement and form is parallel. Nature, 332, 154-155
    • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657-672.
    • Marteau, T. M., Hollands, G. J., & Fletcher, P. C. (2012). Changing human behavior to prevent disease: the importance of targeting automatic processes. Science, 337, 1492-1495.
    • Mason, D. J., Humphreys, G. W., & Kent, L. S. (2003). Exploring selective attention in ADHD: visual search through space and time. Journal of Child Psychology and Psychiatry, 44, 1158-1176.
    • Mason, D. J., Humphreys, G. W., & Kent, L. (2004). Visual search, singleton capture, and the control of attentional set in ADHD. Cognitive Neuropsychology, 21, 661-687.
    • Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology: Human Perception and Performance, 11, 777-787.
    • Mayr, S., & Buchner, A. (2007). Negative priming as a memory phenomenon: A review of 20 years of negative priming research. Zeitschrift für Psychologie/Journal of Psychology, 215, 35-51.
    • Michael, G. A., Lété, B., & Ducrot, S. (2013). Trajectories of attentional development: an exploration with the master activation map model. Developmental Psychology, 49, 615-631.
    • Miller, J. (1988). A warning about median reaction time. Journal of Experimental Psychology: Human Perception and Performance, 14, 539- 543.
    • Milliken, B., Joordens, S., Merikle, P. M., & Seiffert, A. E. (1998). Selective attention: A reevaluation of the implications of negative priming. Psychological Review, 105, 203-229.
    • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100.
    • Moher, J., Lakshmanan, B. M., Egeth, H. E., & Ewen, J. B. (2014). Inhibition drives early feature-based attention. Psychological Science, 25, 315-324.
    • Moore, C. M., & Egeth, H. (1997). Perception without attention: evidence of grouping under conditions of inattention. Journal of Experimental Psychology: Human Perception and Performance, 23, 339-352.
    • Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782-784.
    • Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 1, 56-60.
    • Most, S. B., Scholl, B. J., Clifford, E. R., & Simons, D. J. (2005). What you see is what you set: sustained inattentional blindness and the capture of awareness. Psychological Review, 112, 217-242.
    • Most, S. B., Simons, D. J., Scholl, B. J., Jimenez, R., Clifford, E., & Chabris, C. F. (2001). How not to be seen: The contribution of similarity and selective ignoring to sustained inattentional blindness. Psychological Science, 12, 9-17.
    • Mozer, M. C. (1989). A focused back-propagation algorithm for temporal pattern recognition. Complex systems, 3, 349-381.
    • Müller, H. J., & Mühlenen, A. V. (2000). Probing distractor inhibition in visual search: inhibition of return. Journal of Experimental Psychology: Human Perception & Performance, 26, 1591-1605.
    • Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220-246.
    • Neill, W. T., Valdes, L. A., Terry, K. M., & Gorfein, D. S. (1992). Persistence of negative priming: II. Evidence for episodic trace retrieval. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 993-1000.
    • Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75, 522-536.
    • Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2013). Object-based attention without awareness. Psychological Science, 24, 836-843.
    • Olivers, C. N. L., & Humphreys, G. W. (2002).When visual marking meets the attentional blink: More evidence for top-down, limited capacity inhibition. Journal of Experimental Psychology: Human Perception & Performance, 28, 22 - 42.
    • Olivers, C. N. L., & Humphreys, G. W. (2003). Visual marking inhibits singleton capture. Cognitive Psychology, 47, 1-42.
    • Olivers, C. N., Humphreys, G. W., & Braithwaite, J. J. (2006). The preview search task: Evidence for visual marking. Visual Cognition, 14, 716-735.
    • Olivers, C. N., Humphreys, G. W., Heinke, D., & Cooper, A. C. (2002). Prioritization in visual search: Visual marking is not dependent on a mnemonic search. Perception & Psychophysics, 64, 540-560.
    • Olivers, C.N.L., Watson, D.G., & Humphreys, G.W. (1999). Visual marking of locations versus feature maps: Evidence from within-dimension defined conjunctions. Quarterly Journal of Experimental Psychology, 52A, 679-715.
    • O'Regan, J.K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition, 7, 191-211.
    • O'Regan, J. K., Rensink, R. A., & Clark, J. J. (1999). Change-blindness as a result of 'mudsplashes'. Nature, 398, 34.
    • Osugi, T., Kumada, T., & Kawahara, J. I. (2009). The spatial distribution of inhibition in preview search. Vision Research, 49, 851-861.
    • Osugi, T., Kumada, T., & Kawahara, J. (2010). Visual marking survives graphical change if meaning is retained. Attention, Perception, & Psychophysics, 72, 2144-2156.
    • Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: identity mismatching, not distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20, 613-623.
    • Pashler, H. (1988). Cross-dimensional interaction and texture segregation. Perception & Psychophysics, 43, 307-318.
    • Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological Bulletin, 116, 220-244.
    • Pastò, L., & Burack, J. A. (1997). A developmental study of visual attention: Issues of filtering efficiency and focus. Cognitive Development, 12, 523-535.
    • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89.
    • Pickering, S., & Gathercole, S. E. (2001). Working memory test battery for children (WMTB-C). Psychological Corporation.
    • Phaf, R. H., Van der Heijden, A. H. C., & Hudson, P. T. (1990). SLAM: A connectionist model for attention in visual selection tasks. Cognitive Psychology, 22, 273-341.
    • Pollmann, S., Weidner, R., Humphreys, G. W., Olivers, C. N., Müller, K., Lohmann, G., Wiggins, C.J., & Watson, D. G. (2003). Separating distractor rejection and target detection in posterior parietal cortex-an event-related fMRI study of visual marking. Neuroimage, 18, 310-323.
    • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25.
    • Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17, 75-79.
    • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and performance X: Control of language processes, 32, 531-556.
    • Posner M.I, & Petersen S.E. (1990) The attention system of the human brain. Annual Reviews Neuroscience, 13, 25-42.
    • Pratt, J., Theeuwes, J., & Donk, M. (2007). Offsets and prioritizing the selection of new elements in search displays: More evidence for attentional capture in the preview effect. Visual Cognition, 15, 133-148.
    • Pylyshyn, Z. (1999). Is vision continuous with cognition?: The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22, 341- 365.
    • Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179-197.
    • Rafal, R. D., Calabresi, P. A., Brennan, C. W., & Sciolto, T. K. (1989). Saccade preparation inhibits reorienting to recently attended locations. Journal of Experimental Psychology: Human Perception and Performance, 15, 673-685.
    • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510-532.
    • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849-860.
    • Remington, R. W., Johnston, J. C., & Yantis, S. (1992). Involuntary attentional capture by abrupt onsets. Perception & Psychophysics, 51, 279-290.
    • Rensink, R. A. (2000). Seeing, sensing, and scrutinizing. Vision Research, 40, 1469- 1487.
    • Rensink, R. A. (2000). The dynamic representation of scenes. Visual Cognition, 7, 17- 42.
    • Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368- 373.
    • Riggs, K. J., McTaggart, J., Simpson, A., & Freeman, R. P. (2006). Changes in the capacity of visual working memory in 5-to 10-year-olds. Journal of Experimental Child Psychology, 95, 18-26.
    • Ristic, J., & Kingstone, A. (2009). Rethinking attentional development: reflexive and volitional orienting in children and adults. Developmental Science, 12, 289- 296.
    • Rock, I., Linnett, C. M., Grant, P., & Mack, A. (1992). Perception without attention: Results of a new method. Cognitive Psychology, 24, 502-534.
    • Rolls, E. T., & Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 73, 713-726.
    • Rouder, J. N., & Morey, R. D. (2005). Relational and Arelational Confidence Intervals: A Comment on Fidler, Thomason, Cumming, Finch, and Leeman (2004). Psychological Science, 16, 77-79
    • Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 1029-1040.
    • Ruskin, E. M., & Kaye, D. B. (1990). Developmental differences in visual processing: Strategy versus structure. Journal of Experimental Child Psychology, 50, 1-24.
    • Schul, R., Townsend, J., & Stiles, J. (2003). The development of attentional orienting during the school‐age years. Developmental Science, 6, 262-272.
    • Schachar, R., Mota, V. L., Logan, G. D., Tannock, R., & Klim, P. (2000). Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 28, 227-235.
    • Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1994). Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. Journal of Experimental psychology: Human perception and performance, 20, 357.
    • Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1997). The Attentional Blink. Trends in Cognitive Sciences, 1, 291-296.
    • Shomstein, S., Kimchi, R., Hammer, M., & Behrmann, M. (2010). Perceptual grouping operates independently of attentional selection: evidence from hemispatial neglect. Attention, Perception & Psychophysics, 72, 607-18.
    • Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 1, 261-267.
    • Simons, D. J., & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Sciences, 9, 16-20.
    • Smilek, D., Enns, J. T., Eastwood, J. D., & Merikle, P. M. (2006). Relax! Cognitive strategy influences visual search. Visual Cognition, 14, 543-564.
    • Snowden, R. J., Treue, S., Erickson, R. G., & Andersen, R. A. (1991). The response of area MT and V1 neurons to transparent motion. The Journal of Neuroscience, 11, 2768-2785.
    • Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proceedings of the National Academy of Sciences, 89, 1837-1841.
    • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74, 1-29.
    • Takeda, Y., & Yagi, A. (2000). Inhibitory tagging in visual search can be found if search stimuli remain visible. Perception & Psychophysics, 62, 927-934.
    • Tamnes, C. K., Walhovd, K. B., Dale, A. M., Østby, Y., Grydeland, H., Richardson, G., ... & Alzheimer's Disease Neuroimaging Initiative. (2013). Brain development and aging: overlapping and unique patterns of change. Neuroimage, 68, 63-74.
    • Taylor, M. J., Chevalier, H., & Lobaugh, N. J. (2003). Discrimination of single features and conjunctions by children. International Journal of Psychophysiology, 51, 85-95.
    • Telford, C. W. (1931). The refractory phase of voluntary and associative responses. Journal of Experimental Psychology, 14, 1-36.
    • Terry, K. M., Valdes, L. A., & Neill, W. T. (1994). Does “inhibition of return” occur in discrimination tasks? Perception & Psychophysics, 55, 279-286.
    • Thaler, R.H., Sunstein, C.R. (2008). Nudge: Improving Decisions About Health, Wealth, and Happiness. New Haven, CT: Yale Univ. Press.
    • Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. The Quarterly Journal of Experimental Psychology, 54, 321-343.
    • Tipper, S. P., Driver, J., & Weaver, B. (1991). Short report: Object-centred inhibition of return of visual attention. The Quarterly Journal of Experimental Psychology, 43, 289-298.
    • Tipper, S. P., Weaver, B., & Houghton, G. (1994). Behavioural goals determine inhibitory mechanisms of selective attention. The Quarterly Journal of Experimental Psychology, 47, 809-840.Theeuwes, J. (1991). Exogenous and endogenous control of attention: The effect of visual onsets and offsets. Perception & Psychophysics, 49, 83-90.
    • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599-606.
    • Theeuwes, J. (1994). Endogenous and exogenous control of visual selection. Perception, 23, 429-440.
    • Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11, 65-70.
    • Theeuwes, J., Kramer, A. F., & Atchley, P. (1998). Visual marking of old objects. Psychonomic Bulletin & Review, 5, 130-134.
    • Thompson, L. A., & Massaro, D. W. (1989). Before you see it, you see its parts: Evidence for feature encoding and integration in preschool children and adults. Cognitive Psychology, 21, 334-362.
    • Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37, 571-590.
    • Tipper, S. P., & Driver, J. (1988). Negative priming between pictures and words in a selective attention task: Evidence for semantic processing of ignored stimuli. Memory & Cognition, 16, 64-70.
    • Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3-18.
    • Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 242-248.
    • Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 40, 201-237.
    • Treisman, A. (1999). Solutions to the binding problem: progress through controversy and convergence. Neuron, 24, 105-125.
    • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97-136.
    • Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459- 478.
    • Trick, L. M., & Enns, J. T. (1997). Clusters precede shapes in perceptual organization. Psychological Science, 8, 124-129.
    • Trick, L. M., & Enns, J. T. (1998). Lifespan changes in attention: The visual search task. Cognitive Development, 13, 369-386.
    • Trick, L. M., Jaspers-Fayer, F., & Sethi, N. (2005). Multiple-object tracking in children: The “Catch the Spies” task. Cognitive Development, 20, 373-387.
    • Trick, L. M., Hollinsworth, H., & Brodeur, D. A. (2009). Multiple-object tracking across the lifespan: Do different factors contribute to diminished performance in different age groups. In Dedrick, D., and Trick, L. (Eds.), Computation, Cognition, and Pylyshyn, (pp. 79-99) Cambridge, MA, U.S.: MIT press.
    • Tsal, Y., & Benoni, H. (2010). Diluting the burden of load: perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645-1656.
    • Tsujimoto, S., Kuwajima, M., & Sawaguchi, T. (2007). Developmental fractionation of working memory and response inhibition during childhood. Experimental Psychology, 54, 30-37.
    • Quinlan, P. T., & Humphreys, G. W. (1987). Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches. Perception & Psychophysics, 41, 455-472.
    • Umilta C. (1988). The control operations of consciousness. In Marcel A. J., and Bisiach E.(Eds.), Consciousness in Contemporary Science, (pp. 334-356) Oxford: Oxford University Press
    • Valenza, E., Simion, F., & Umiltà, C. (1994). Inhibition of return in newborn infants. Infant Behavior and Development, 17, 293-302.
    • van Gaal, S., Ridderinkhof, K. R., Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. (2008). Frontal cortex mediates unconsciously triggered inhibitory control. The Journal of Neuroscience, 28, 8053-8062.
    • van Gaal, S., Ridderinkhof, K. R., Scholte, H. S., & Lamme, V. A. (2010). Unconscious activation of the prefrontal no-go network. The Journal of Neuroscience, 30, 4143-4150.
    • van Oeffelen, M. P., & Vos, P. G. (1982). Configurational effects on the enumeration of dots: Counting by groups. Memory & Cognition, 10, 396- 404.
    • van Oeffelen, M. P., & Vos, P. G. (1983). An algorithm for pattern description on the level of relative proximity. Pattern Recognition, 16, 341-348.
    • von Mühlenen, A., Watson, D.G., & Gunnell, D. (2013). Blink and you won't miss The preview benefit in visual marking survives internally generated eye blinks. Journal of Experimental Psychology: Human Perception & Performance, 39, 1279-1290.
    • Watson, D. G. (2001). Visual marking in moving displays: Feature-based inhibition is not necessary. Perception & Psychophysics, 63, 74-84.
    • Watson, D. G., Braithwaite, J. J., & Humphreys, G. W. (2008). Resisting change: The influence of luminance changes on visual marking and the preview benefit. Perception & Psychophysics, 70, 1526-1539.
    • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional Inhibition of old objects. Psychological Review,104, 90-122.
    • Watson, D. G., & Humphreys, G. W. (1998). Visual marking of moving objects: A role for top-down feature-based inhibition in selection. Journal of Experimental Psychology: Human Perception and Performance, 24, 946 - 962.
    • Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a Probe-dot Paradigm. Perception & Psychophysics, 62, 471 - 481.
    • Watson, D. G., & Humphreys, G. W. (2002). Visual marking and visual change. Journal of Experimental Psychology: Human Perception and Performance, 28, 379 -395.
    • Watson, D. G., & Humphreys, G. W. (2005). Visual marking: The effects of irrelevant changes on preview search. Perception & Psychophysics, 67, 418 - 434.
    • Watson, D. G., Humphreys, G. W., & Olivers, C. N. (2003). Visual marking: Using time in visual selection. Trends in Cognitive Sciences, 7, 180-186.
    • Watson, D. G., & Inglis, M. (2007). Eye movements and time-based selection: Where do the eyes go in preview search? Psychonomic Bulletin & Review, 14, 852-857.
    • Watson, D. G., & Kunar, M. A. (2010). Visual marking and change blindness: Moving occluders and transient masks neutralize shape changes to ignored objects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1391 - 1405.
    • Watson, D. G., & Kunar, M. A. (2012). Determining the capacity of time-based selection. Journal of Experimental Psychology: Human Perception and Performance, 38, 350 - 366.
    • Watson, D. G., & Maylor, E. A. (2002). Aging and visual marking: Selective deficits for moving stimuli. Psychology and Aging, 17, 321-339.
    • Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44, 575-587.
    • Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1, 202-238.
    • Wolfe, J. M. (1998). Visual search. In Pashler, H.E. (Ed.)., Attention, (pp.13-73). London, U.K.: University College London Press
    • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419-433.
    • Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it?. Nature Reviews Neuroscience, 5, 495-501.
    • Wolfe, J. M., Võ, M. L. H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 15, 77-84.
    • Yantis, S. (1998). Control of visual attention. In Pashler, H.E. (Ed.). Attention, (pp.223-256). London, U.K.: University College London Press Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20, 95-107.
    • Yantis, S., & Johnson, D. N. (1990). Mechanisms of attentional priority. Journal of Experimental Psychology: Human Perception and Performance, 16, 812- 825.
    • Yantis, S., & Jones, E. (1991). Mechanisms of attentional selection: Temporally
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article