LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, L.; Gawthrop, P. J.; Young, P.C. (2005)
Languages: English
Types: Other
Subjects: QC
Although structural constraints such as model order and time delay have been incorporated in the continuous time system identification since its origin, the constraints on the estimated model parameters were rarely enforced. This paper proposes a continuous time system identification approach with constraints. It shows that by incorporating physical parameter information known a priori as hard constraints, the traditional parameter estimation schemes are modified to minimize a quadratic cost function with linear inequality constraints. Using the structure of Frequency Sampling Filters as the vehicle, the paper shows that the constraints can be readily imposed on continuous time frequency response estimation and step response estimation. In particular, a priori knowledge in both time-domain and frequency domain is utilized simultaneously as the constraints for the optimal parameter solution. A Monte-Carlo simulation study with 100 noise realization is used to demonstrate the improvement of the estimation results in terms of continuous time frequency response and continuous time step response.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article