Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hart, Lewis; Harries, Josephine; Greenland, Barny; Colquhoun, Howard; Hayes, Wayne (2015)
Publisher: American Chemical Society
Languages: English
Types: Article
Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) De Gans, B.-J.; Duineveld, P. C.; Schubert, U. S. Inkjet Printing of Polymers: State of the Art and Future Developments. Adv. Mater.
    • (2) Calvert, P. Inkjet Printing for Materials and Devices. Chem.
    • Mater. 2001, 13, 3299−3305.
    • (3) Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet PrintingProcess and Its Applications. Adv. Mater. 2010, 22, 673− 685.
    • (4) Hunt, C.; Askeland, R.; Slevin, L.; Prasad, K. A. High-Quality Inkjet Color Graphics Performance on Plain Paper. Hewlett Packard J.
    • (5) Chen, P.; Chen, H.; Qiu, J.; Zhou, C. Inkjet Printing of SingleWalled Carbon Nanotube/RuO2 Nanowire Supercapacitors on Cloth Fabrics and Flexible Substrates. Nano Res. 2010, 3, 594−603.
    • (6) Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science 2000, 290, 2123−2126.
    • (7) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. A High-Mobility Electron-Transporting Polymer for Printed Transistors. Nature 2009, 457, 679−686.
    • (8) Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet Printing of Single-Crystal Films. Nature 2011, 475, 364−367.
    • (9) Wang, J. Z.; Zheng, Z. H.; Li, H. W.; Huck, W. T. S.; Sirringhaus, H. Dewetting of Conducting Polymer Inkjet Droplets on Patterned Surfaces. Nat. Mater. 2004, 3, 171−176.
    • (10) Kordaś, K.; Mustonen, T.; Tot́h, G.; Jantunen, H.; Lajunen, M.; Soldano, C.; Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P. M. Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes.
    • Small 2006, 2, 1021−1025.
    • (11) Lee, H.-H.; Chou, K.-S.; Huang, K.-C. Inkjet Printing of Nanosized Silver Colloids. Nanotechnology 2005, 16, 2436−2441.
    • (12) Hutchings, I. M.; Martin, G. D. Inkjet Technology for Digital Fabrication; John Wiley & Sons Ltd.: Chichester, U.K., 2012; pp 1−20.
    • (13) Xu, T.; Jin, J.; Gregory, C.; Hickman, J. J.; Boland, T. Inkjet Printing of Viable Mammalian Cells. Biomaterials 2005, 26, 93−99.
    • (14) Roth, E. A.; Xu, T.; Das, M.; Gregory, C.; Hickman, J. J.; Boland, T. Inkjet Printing for High-Throughput Cell Patterning.
    • Biomaterials 2004, 25, 3707−3715.
    • (15) Boland, T.; Xu, T.; Damon, B.; Cui, X. Application of Inkjet Printing to Tissue Engineering. Biotechnol. J. 2006, 1, 910−917.
    • (16) Hudd, A.; Magdassi, S.; Marmur, A.; Smith, P. J.; Frenkel, M. In The Chemistry of Inkjet Inks; Magdassi, S., Ed.; World Scientific Publishing: Singapore, 2010; pp 1−73.
    • (17) Aida, T.; Meijer, E. W.; Stupp, S. I. Functional Supramolecular Polymers. Science 2012, 335, 813−817.
    • (18) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P.
    • Supramolecular Polymers. Chem. Rev. 2001, 101, 4071−4098.
    • (19) Greenland, B. W.; Burattini, S.; Hayes, W.; Colquhoun, H. M.
    • Tetrahedron 2008, 64, 8346−8354.
    • (20) Burattini, S.; Colquhoun, H. M.; Greenland, B. W.; Hayes, W.; Wade, M. Pyrene-Functionalised, Alternating Copolyimide for Sensing Nitroaromatic Compounds. Macromol. Rapid Commun. 2009, 30, 459−463.
    • (21) Burattini, S.; Colquhoun, H. M.; Fox, J. D.; Friedmann, D.; Greenland, B. W.; Harris, P. J. F.; Hayes, W.; Mackay, M. E.; Rowan, S.
    • Commun. 2009, 6717−6719.
    • (22) Burattini, S.; Colquhoun, H. M.; Greenland, B. W.; Hayes, W. A Novel Self-Healing Supramolecular Polymer System. Faraday Discuss.
    • (23) Burattini, S.; Greenland, B. W.; Hermida Merino, D.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I.
    • Chem. Soc. 2010, 132, 12051−12058.
    • (24) Burattini, S.; Greenland, B. W.; Hayes, W.; Mackay, M. E.; Rowan, S. J.; Colquhoun, H. M. A Supramolecular Polymer Based on Tweezer-Type π−π Stacking Interactions: Molecular Design for Healability and Enhanced Toughness. Chem. Mater. 2011, 23, 6−8.
    • (25) Fox, J.; Wie, J. J.; Greenland, B. W.; Burattini, S.; Hayes, W.; Colquhoun, H. M.; Mackay, M. E.; Rowan, S. J. High-Strength, Healable, Supramolecular Polymer Nanocomposites. J. Am. Chem. Soc.
    • (26) Greenland, B. W.; Bird, M. B.; Burattini, S.; Cramer, R.; O'Reilly, R. K.; Patterson, J. P.; Hayes, W.; Cardin, C. J.; Colquhoun, H. M. Mutual Binding of Polymer End-Groups by Complementary π- π-stacking: A Molecular “Roman Handshake”. Chem. Commun. 2013, 49, 454−456.
    • (27) Vaiyapuri, R.; Greenland, B. W.; Rowan, S. J.; Colquhoun, H.
    • M.; Elliott, J. M.; Hayes, W. Thermoresponsive Supramolecular Polymer Network Comprising Pyrene-Functionalized Gold Nanoparticles and a Chain-Folding Polydiimide. Macromolecules 2012, 45, 5567−5574.
    • (28) Vaiyapuri, R.; Greenland, B. W.; Colquhoun, H. M.; Elliott, J.
    • M.; Hayes, W. Molecular Recognition between Functionalized Gold Nanoparticles and Healable, Supramolecular Polymer BlendsA Route to Property Enhancement. Polym. Chem. 2013, 4, 4902−4909.
    • (29) Iverson, B. L.; Lokey, R. S. Synthetic Molecules That Fold into a Pleated Secondary Structure in Solution. Nature 1995, 375, 303−305.
    • (30) Das, A.; Ghosh, S. Supramolecular Assemblies by ChargeTransfer Interactions between Donor and Acceptor Chromophores.
    • Angew. Chem., Int. Ed. 2014, 53, 2038−2054.
    • (31) Nguyen, J. Q.; Iverson, B. L. An Amphiphilic Folding Molecule That Undergoes an Irreversible Conformational Change. J. Am. Chem.
    • Soc. 1999, 121, 2639−2640.
    • (32) Cubberley, M. S.; Iverson, B. L. 1H NMR Investigation of Solvent Effects in Aromatic Stacking Interactions. J. Am. Chem. Soc.
    • (33) Gabriel, G. J.; Sorey, S.; Iverson, B. L. Altering the Folding Patterns of Naphthyl Trimers. J. Am. Chem. Soc. 2005, 127, 2637− 2640.
    • (34) Reczek, J. J.; Iverson, B. L. Using Aromatic Donor Acceptor Interactions To Affect Macromolecular Assembly. Macromolecules 2006, 39, 5601−5603.
    • (35) Colquhoun, H. M.; Goodings, E. P.; Maud, J. M.; Stoddart, J. F.; Wolstenholme, J. B.; Williams, D. J. The Complexation of the Diquat Dication by Dibenzo-3n-Crown-n Ethers. J. Chem. Soc., Perkin Trans. 2 1985, 607−624.
    • (36) Nielsen, M. B.; Jeppesen, J. O.; Lau, J.; Lomholt, C.; Damgaard, D.; Jacobsen, J. P.; Becher, J.; Stoddart, J. F. Binding Studies between Tetrathiafulvalene Derivatives and Cyclobis(paraquat-p-phenylene). J.
    • Org. Chem. 2001, 66, 3559−3563.
    • (37) Colquhoun, H. M.; Zhu, Z. Recognition of Polyimide Sequence Information by a Molecular Tweezer. Angew. Chem., Int. Ed. 2004, 43, 5040−5045.
    • (38) Colquhoun, H. M.; Zhu, Z.; Cardin, C. J.; Gan, Y. Principles of Sequence-Recognition in Aromatic Polyimides. Chem. Commun. 2004, 2650−2652.
    • (39) Colquhoun, H. M.; Zhu, Z.; Cardin, C. J.; Gan, Y.; Drew, M. G.
    • B. Sterically Controlled Recognition of Macromolecular Sequence Information by Molecular Tweezers. J. Am. Chem. Soc. 2007, 129, 16163−16174.
    • (40) Hart, L. R.; Hunter, J. H.; Nguyen, N. A.; Harries, J. L.; Greenland, B. W.; Mackay, M. E.; Colquhoun, H. M.; Hayes, W.
    • Multivalency in Healable Supramolecular Polymers: The Effect of Supramolecular Cross-Link Density on the Mechanical Properties and Healing of Non-Covalent Polymer Networks. Polym. Chem. 2014, 5, 3680−3688.
    • (41) Hart, L. R.; Harries, J. L.; Clifton, A.; Colquhoun, H. M.; Hayes, W. Inkjet Composition. PCT Patent Appl. WO 2014111722 A1, 2014.
    • (42) Limem, S.; McCallum, D.; Wallace, G. G.; in het Panhuis, M.; Calvert, P. Inkjet Printing of Self-Assembling Polyelectrolyte Hydrogels. Soft Matter 2011, 7, 3818−3826.
    • (43) Hasegawa, T.; Hiraoka, M.; Yamada, T. Double-Shot Inkjet Printing of Donor−Acceptor-Type Organic Charge-Transfer Complexes: Wet/Nonwet Definition and Its Use for Contact Engineering.
    • Thin Solid Films 2010, 518, 3988−3991.
    • (44) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J.; Hirschberg, J. H.; Lange, R. F.; Lowe, J. K.; Meijer, E. W. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278, 1601−1604.
    • (45) Brunahl, J. Piezoelectric Shear Mode Drop-on-Demand Inkjet Actuator. Sens. Actuators, A 2002, 101, 371−382.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok