Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schürmann, Matthias; Frese, Natalie; Beyer, André; Heimann, Peter; Widera, Darius; Mönkemöller, Viola; Huser, Thomas; Barbara, Kaltschmidt; Christian, Kaltschmidt; Armin, Gölzhäuser (2015)
Publisher: John Wiley & Sons
Languages: English
Types: Article
Cell membranes are composed of two-dimensional bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, we present direct visualization of cell membrane nanodomains by helium ion microscopy (HIM). We show that HIM is capable to image biological specimens without any conductive coating, and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ~15 nm.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Singer, S. J.; Nicolson, G. L., Science 1972, 175 (4023), 720-31.
    • [2] Karnovsky, M. J.; Kleinfeld, A. M.; Hoover, R. L.; Klausner, R. D., J Cell Biol 1982, 94 (1), 1-6.
    • [3] Parton, R. G.; Simons, K., Science 1995, 269 (5229), 1398-9.
    • [4] Simons, K.; Sampaio, J. L., Cold Spring Harb Perspect Biol 2011, 3 (10), a004697.
    • [5] Simons, K.; Ikonen, E., Nature 1997, 387 (6633), 569-72.
    • [6] Pike, L. J., J Lipid Res 2009, 50 Suppl, S323-8.
    • [7] Horejsi, V.; Hrdinka, M., FEBS Lett 2014, 588 (15), 2392-7.
    • [8] Jacobson, K.; Sheets, E. D.; Simson, R., Science 1995, 268 (5216), 1441-2.
    • [9] Sheets, E. D.; Lee, G. M.; Simson, R.; Jacobson, K., Biochemistry 1997, 36 (41), 12449- 58.
    • [10] Eggeling, C.; Ringemann, C.; Medda, R.; Schwarzmann, G.; Sandhoff, K.; Polyakova, S.; Belov, V. N.; Hein, B.; von Middendorff, C.; Schonle, A.; Hell, S. W., Nature 2009, 457 (7233), 1159-62.
    • [11] Pralle, A.; Keller, P.; Florin, E. L.; Simons, K.; Horber, J. K. H., J. Cell. Biol. 2000, 148 (5), 997-1007.
    • [12] Krager, K. J.; Sarkar, M.; Twait, E. C.; Lill, N. L.; Koland, J. G., J Lipid Res 2012, 53 (10), 2214-25.
    • [13] George, K. S.; Wu, S., Toxicol Appl Pharmacol 2012, 259 (3), 311-9.
    • [14] Simons, K.; Gerl, M. J., Nat Rev Mol Cell Biol 2010, 11 (10), 688-99.
    • [15] Staubach, S.; Hanisch, F. G., Expert Rev Proteomics 2011, 8 (2), 263-77.
    • [16] Hashimoto, M.; Takenouchi, T.; Rockenstein, E.; Masliah, E., J Neurochem 2003, 85 (6), 1468-79.
    • [17] Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K., J Cell Biol 2003, 160 (1), 113- 23.
    • [18] Sebastiao, A. M.; Colino-Oliveira, M.; Assaife-Lopes, N.; Dias, R. B.; Ribeiro, J. A., Neuropharmacology 2013, 64, 97-107.
    • [19] Marin, R.; Rojo, J. A.; Fabelo, N.; Fernandez, C. E.; Diaz, M., Neuroscience 2013, 245, 26-39.
    • [20] Simons, K.; Toomre, D., Nat Rev Mol Cell Biol 2000, 1 (1), 31-9.
    • [21] Sonnino, S.; Prinetti, A., Curr Med Chem 2013, 20 (1), 4-21.
    • [22] Gottfert, F.; Wurm, C. A.; Mueller, V.; Berning, S.; Cordes, V. C.; Honigmann, A.; Hell, S. W., Biophys J 2013, 105 (1), L01-3.
    • [23] Vanden Berg-Foels, W. S.; Scipioni, L.; Huynh, C.; Wen, X., J Microsc 2012, 246 (2), 168-76.
    • [24] Ward, B. W.; Notte, J. A.; Economou, N. P., J Vac Sci Technol B 2006, 24 (2871).
    • [25] Hlavacek, G.; Veligura, V.; van Gastel, R.; Poelsema, J., J. Vac. Sci. Technol. B 2014, 32, 020801.
    • [26] Joens, M. S.; Huynh, C.; Kasuboski, J. M.; Ferranti, D.; Sigal, Y. J.; Zeitvogel, F.; Obst, M.; Burkhardt, C. J.; Curran, K. P.; Chalasani, S. H.; Stern, L. A.; Goetze, B.; Fitzpatrick, J. A., Sci Rep 2013, 3, 3514.
    • [27] Greiner, J. F.; Hauser, S.; Widera, D.; Müller, J.; Qunneis, F.; Zander, C.; Martin, I.; Mallah, J.; Schuetzmann, D.; Prante, C.; Schwarze, H.; Prohaska, W.; Beyer, A.; Rott, K.;
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article