LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bianchini, Davide; Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Levi, Emanuele; Ravanini, Francesco (2014)
Publisher: IOP Publishing
Languages: English
Types: Article
Subjects: QA, QC, Condensed Matter - Statistical Mechanics, High Energy Physics - Theory
In this letter we show that the R\'enyi entanglement entropy of a region of large size $\ell$ in a one-dimensional critical model whose ground state breaks conformal invariance (such as in those described by non-unitary conformal field theories), behaves as $S_n \sim \frac{c_{\mathrm{eff}}(n+1)}{6n} \log \ell$, where $c_{\mathrm{eff}}=c-24\Delta>0$ is the effective central charge, $c$ (which may be negative) is the central charge of the conformal field theory and $\Delta\neq 0$ is the lowest holomorphic conformal dimension in the theory. We also obtain results for models with boundaries, and with a large but finite correlation length, and we show that if the lowest conformal eigenspace is logarithmic ($L_0 = \Delta I + N$ with $N$ nilpotent), then there is an additional term proportional to $\log(\log \ell)$. These results generalize the well known expressions for unitary models. We provide a general proof, and report on numerical evidence for a non-unitary spin chain and an analytical computation using the corner transfer matrix method for a non-unitary lattice model. We use a new algebraic technique for studying the branching that arises within the replica approach, and find a new expression for the entanglement entropy in terms of correlation functions of twist fields for non-unitary models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S.R. White, Phys. Rev. Lett. 69, 2863 (1992).
    • [2] G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
    • [3] C. H. Bennett, H.J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A53, 2046 (1996).
    • [4] D. Jonathan and M.B. Plenio, Phys. Rev. Lett. 83, 3566 (1999).
    • [5] M.A. Nielsen, Phys. Rev. Lett. 83, 436 (1999); M.A. Nielsen; S. Turgut, J. Phys. A40 12185 (2007); M. Klimesh, Proc. 2004 International Symposium on Information Theory (ISIT 2004), June 27{July 2, 2004, p. 357.
    • [7] L. Bombelli, R.K. Koul, J. Lee, and R.D. Sorkin, Phys. Rev. D34, 373 (1986).
    • [8] P. Calabrese, J.L. Cardy and B. Doyon (ed), J. Phys. A42 500301 (2009).
    • [9] J.P. Go , D.A. Tennant, and S.E. Nagler, Phys. Rev. B52, 15992 (1995); K. Totsuka, Phys. Rev. B57, 3454 (1998); B.C. Watson, V.N. Kotov, M.W. Meisel, D.W. Hall, G.E. Granroth, W.T. Montfrooij, S.E. Nagler, D.A. Jensen, R. Backov, M.A. Petruska, G.E. Fanucci and D.R. Talham, Phys. Rev. Lett. 86, 5168 (2001); B. Thielemann, Ch. Ruegg, H.M. R nnow, A.M. Lauchli, J.-S. Caux, B. Normand, D. Biner, K.W. Kramer, H.-U. Gudel, J. Stahn, K. Habicht, K. Kiefer, M. Boehm, D.F. McMorrow and J. Mesot, Phys. Rev. Lett. 102, 107204 (2009); A.B. Kuklov and B.V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003); L.- M. Duan, E. Demler, and M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003); J.J. Garc a-Ripoll and J.I. Cirac, Phys.5, 76 (2003); M. Lewenstein, A. Sanpera, V. Ahu nger, B. Damski, A. Sen(De) and U. Send, Adv. Phys. 56, 243 (2007); Y.-A. Chen, S. Nascimbene, M. Aidelsburger, M. Atala, S. Trotzky and I. Bloch, Phys. Rev. Lett. 107, 210405 (2011). T. Kinoshita, T. Wenger and D. S. Weiss, Nature 440, 900 (2006).
    • [10] C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B424, 443467 (1994).
    • [11] G. Vidal, J.I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).
    • [12] J.I. Latorre, E. Rico, and G. Vidal, Quant. Inf. Comput. 4, 48 (2004).
    • [13] P. Calabrese and J. L. Cardy, J. Stat. Mech. (2004) P06002; J. Stat. Mech. (2005) P04010.
    • [14] A.B. Zamolodchikov, JETP Lett 43, 730 (1986).
    • [15] L. Bombelli, R.K. Koul, J. Lee, and R.D. Sorkin, Phys.Rev. D34, 373 (1986). J. Eisert, M. Crammer and M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010).
    • [16] F. Castilho Alcaraz, M. Iban~ez Berganza, G. Sierra, Phys. Rev. Lett. 106, 201601 (2011); M. Iban~ez Berganza, F. Castilho Alcaraz and G. Sierra, J. Stat. Mech. (2012) P01016.
    • [17] F.H.L. Essler, A.M. Lauchli, P. Calabrese Phys. Rev. Lett. 110, 115701 (2013). P. Calabrese, F.H.L. Essler and A.M. Lauchli, J. Stat. Mech. (2014) P09025.
    • [18] V.G Knizhnik, Commun. Math. Phys. 112, 567 (1987).
    • [19] J. L. Cardy, O. A. Castro-Alvaredo and B. Doyon, J. Stat. Phys. 130, 129 (2008).
    • [20] O.A. Castro-Alvaredo and B. Doyon, J. Stat. Mech. (2011) P02001.
    • [21] P. Calabrese, J.L. Cardy and E. Toni, Phys. Rev. Lett. 109, 130502 (2012); J. Stat. Mech. (2013) P02008; P. Calabrese, L. Tagliacozzo and E. Toni, J. Stat. Mech. (2013) P05002.
    • [22] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer (1997). A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241 333 (1984).
    • [23] E. Vernier, J.L. Jacobsen and H. Saleur, J. Phys. A47, 285202 (2014).
    • [24] K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, UK, 1999
    • [25] V. Gurarie, Nucl. Phys. B410, 535 (1993); Nucl. Phys. B546, 765 (1999).
    • [26] Z. Maassarani and D. Serban, Nucl. Phys. B489, 603-625 (1997).
    • [27] M. Alishahiha, A.F. Astaneh, and M.R.M. Moza ar, Phys. Rev. D89, 065023 (2014).
    • [28] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter, and G.R.W. Quispel, J. Phys. A20, 6397 (1987); V. Pasquier and H. Saleur, Nucl. Phys. B330, 523 (1990); G. Juttner and M. Karowski, Nucl. Phys. B430, 615 (1994). C. Kor and R.A. Weston, J.Phys. A40, 8845 (2007).
    • [29] G. von Gehlen, J. Phys. A24 5371 (1991); Int. J. Mod. Phys. B8 3507 (1994).
    • [30] M.E. Fisher, Phys. Rev. Lett. 40, 1610 (1978); J.L. Cardy, Phys. Rev. Lett. 54, 1354 (1985).
    • [31] C.M. Bender, Rept. Prog. Phys. 70, 947 (2007); C. Figueira de Morisson Faria and A. Fring, Laser Physics, 17, 424 (2007); A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys. 7, 119 (2010).
    • [32] F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. of Phys. 213, 74 (1992).
    • [33] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
    • [34] A. Fring, Phil. Trans. R. Soc. A 371, 20120046 (2013).
    • [35] O.A. Castro-Alvaredo and A. Fring, J. Phys. A42 465211 (2009).
    • [36] C.E. Ruter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev and D. Kip, Nature Phys. 6, 192 (2010); L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.- F. Chen, Y. Fainman, A. Scherer, Science 333, 729 (2011); A Regensburger, C. Bersch,M.- A. Miri,G. Onishchukov,D.N. Christodoulides and U. Peschel, Nature 488, 167 (2012).
    • [37] T. Eichelkraut, R. Heilmann, S. Weimann, S. Sttzer, F. Dreisow, D.N. Christodoulides, S. Nolte and A. Szameit, Nature Commun. 4, 2533 (2013).
    • [38] J.M. Hickey, S. Genway, I. Lesanovsky and J.P. Garrahan, Phys. Rev. B87, 184303 (2013).
    • [39] J.M. Hickey, E. Levi and J.P. Garrahan, Phys.Rev. B90, 094301 (2014).
    • [40] S. Longhi, Phys. Rev. Lett. 105, 013903 (2010).
    • [41] U. Bilstein and B. Wehefritz, J. Phys. A30, 4925 (1997).
    • [42] B. Huckenstein, Rev. Mod. Phys. 67, 357 (1995).
    • [43] A.I. Nesterov, G.P. Berman, J.C. Beas Zepeda and A.R. Bishop, Quant. Inf. Process. 13, 371 (2014).
    • [44] C. Itzykson, H. Saleur, and J.-B. Zuber, Europhys. Lett. 2, 91 (1986).
    • [45] I. A eck, Phys. Rev. Lett. 56 746{748 (1986).
    • [46] H.W.J. Blote, J.L. Cardy and M.P. Nightingale, Phys. Rev. Lett. 56 742{745 (1986).
    • [47] O.A. Castro-Alvaredo, B. Doyon and E. Levi, J. Phys. A44 492003 (2011); E. Levi, J. Phys. A45 275401 (2012).
    • [48] B. Doyon, M. Hoogeveen and D. Bernard, J. Stat. Mech. (2014) P03002.
    • [49] D. Bianchini, Entanglement entropy in restricted integrable spin chains, MSc Thesis, University of Bologna (2013); D. Bianchini and F. Ravanini, in preparation.
    • [50] P. J. Forrester and R. J. Baxter, J. Stat. Phys. 38, 435{472 (1985).
    • [51] L. Kaulke, I. Peschel and M. Legeza, Annalen der Physik 8(2), 153{164 (1999); I. Peschel, J. Stat. Mech. (2004) P12005.
    • [52] R.J. Baxter, Exactly solved models in statistical mechanics, London Academic Press Inc. (1982).
    • [53] A. De Luca and F. Franchini, Phys. Rev. B87, 045118 (2013).
    • [54] V. G. Kac and M. Wakimoto, Acta Appl. Math. 21 3, (1990)
    • [55] P. Bouwknegt, Coset construction for winding subalgebras and applications, q-alg/9610013 (1996).
    • [56] L. Borisov, M. B. Halpern and C. Schweigert, Int. J. Mod. Phys. A13, 125-168 (1998).
    • [57] D. Bianchini, O. Castro-Alvaredo and B. Doyon, work in progress.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article