LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cherian Lukose, Cecil; Zoppi, Guillaume; Birkett, Martin (2015)
Publisher: Institute of Physics
Languages: English
Types: Article
Subjects: H300
This paper explores the key developments in thin film resistive materials for use in the fabrication of discrete precision resistors. Firstly an introduction to the preparation of thin films and their fundamental properties is given with respect to well established systems such as NiCr, TaN and CrSiO. The effect of doping these systems in both solid and gaseous forms to further refine their structural and electrical properties is then discussed before the performance of more recent materials systems such as CuAlMo and MmAgCuN are reviewed. In addition to performance of the materials themselves, the effect of varying processing parameters such as deposition pressure and temperature and subsequent annealing environment, as well as laser trimming energy and geometry are also studied. It is shown how these parameters can be systematically controlled to produce films of the required properties for varying applications such as high precision, long term stability and high power pulse performance.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Kang B, Hur S, Kim D and Yoon S 2005 Electrochem. Solid. St 8 92
    • [2] Fraga M and Pessoa R 2013 Thin film resistors: Review and perspectives Resistors Theory of Operation, Behavior and Safety Regulations ed R Dauo (New York: Nova) chapter 1 1-16
    • [3] Kennedy R 1999 Materials for thin film resistors Adv. Micro. 26 12
    • [4] Elshabini-Riad A and Barlow F 1998 Thin Film Technology Handbook (New York: McGraw-Hil) chapter 3 1-19
    • [5] Hall P 1997 Thin Solid Films 300 256-264
    • [6] Jonas M and Peled A 1982 Thin Solid Films 90 385-391
    • [7] Vishay Intertechnology 2013 Drift Calculation for Thin Film Resistors-Technical note Document Number: 28809
    • [8] Zhigal'skii G and Jones B 2003 Electrocomponent Science Monographs - The Physical Properties of Thin Metal Films Taylor and Francis Publications.1-34
    • [9] Maissel L 1968 Thin film resistance materials and characteristics Solid State Technol. 11 27-32
    • [10] Rossiter P 1987 Cambridge Solid State Science Series - The Electrical Resistivity of Metals and Alloys, Cambridge University Press. 28 137-271
    • [11] Kwon Y, Kim N, Choi G, Lee W, Seo Y and Park J 2005 Microelectron. Eng. 82 314-320
    • [12] Degenhart H and Pratt L 1963 Electronic Engineers International Convention, 11 59-68
    • [13] Petrovic S, Bundaleski N, Radovic M, Ristic Z, Gilgoric G, Perusko D, Mitric M, Pracek B, Zalar A and Rakocevic Z 2007 Nuclear Instruments and Methods in Physics Research B 256 368 372
    • [14] Kazi I, Wild P, Moore T and Sayer M 2006 Thin Solid Films 515 2602-2606
    • [15] Yan J and Zhou J 2007 Mater. Sci. Tech. Ser. 23 195-202
    • [16] Nachrodt D, Paschen U, Have A and Vogt H 2008 IEEE Electr. Device L. 29 212-214
    • [17] Vinayak S, Vyas H, Muraleedharan K and Vankar V 2006 Thin Solid Films 514 52-57
    • [18] Birjega M, Constantin C, Florescu I and Sarbu C 1982 Thin Solid Films 92 315-321
    • [19] Dhere N, Vaiude D and Losch W 1979 Thin Solid Films 59 33-41
    • [20] Bhatt A, Lock C and Stevenson D 1984 DC sputtering of Ni-Cr thin film resistors International Society for Hybrid Microelectronics 370-376
    • [21] Au C, Jackson M and Anderson W 1987 J. Electron. Mater. 16 301-306
    • [22] Lee B, Park G, You D and Lee D 2003 Composition control and electrical properties of Ni-Cr thin films prepared by co-sputtering method, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report 72-74
    • [23] Phuong N, Kim D, Kang B, Kim C and Yoon S 2006 J. Electrochem. Soc. 153 G27-G29
    • [24] Nguyen M and Yoon S 2006 J. Electrochem. Soc 153 G606-G608
    • [25] Koltai M, Trifonov I and Czermann M 1983 Segregation phenomena in thin NiCr layers, Vacuum 33 49- 52
    • [26] Griessing J 1977 Electrocomp. Sci. Tech. 4 133-137
    • [27] Hardy W and Murti D 1974 Thin Solid Films 20 345-362
    • [28] Nocerino G and Singer K 1979 J. Vac. Sci. Technol. 16 147-150
    • [29] Zelenska J, Chudoba V, Rehak J and Rohacek K 1991 Thin Solid Films 200 239-246
    • [30] Schippel E Thin Solid Films 123 57-62
    • [31] Schippel E 1987 Thin Solid Films 146 113-138
    • [32] Singh A 1986 Thin Solid Films 138 63-65
    • [33] Van Den Broek J, Donkers J, Van Der Rijt R and Janssen J 1998 Philips J. Res. 51 429-447
    • [34] Andziulis A, Andziuliene B, Vaupsas J and Zadvydas M 2006 Surf. Coat. Tech. 200 6212-6217
    • [35] Gawalek W 1983 Thin Solid Films 116 205-210
    • [36] Lee B, Park G, Kim J and Lee D 2002 The effect of the process parameters on the electrical properties of Ni-Cr-Si alloy thin film resistors 2002 Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report 72-74
    • [37] Satrapinski A, Savin A, Novikov S and Hahtela O 2008 Meas. Sci. Technol. 19 1-5
    • [38] Lee B and Lee D 2002 J. Korean Phys. Soc. 40 339-343
    • [39] Hur S, Kim D, Kang B and Yoon S 2004 J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 22 2698-2701
    • [40] Ishikawa M, Enomoto H, Mikamoto N, Nakamura T, Nawafune H, Uegaki T, Mizumoto S, Matsuoka M and Iwakura C 2000 T. I. Met. Finish. 78 86-88
    • [41] Hur S, Kim D, Kang B and Yoon S 2005 J. Electrochem. Soc. 152 472-476
    • [42] Birkett M, Penlington R, Wan C and Zoppi G 2013 Thin Solid Films 540 235-241
    • [43] Au C, Anderson W, Schmitz D, Flassayer J and Collins F 1990 J. Mater. Res. 5 1224-1232
    • [44] Yoshida S 1982 Mass production of HCP tantalum nitride film resistors sputtered by planar magnetron, Proceedings of the 32nd Electronic Components Conference San Diego, CA, XII, published by IEEE, 530-535
    • [45] Radhakrishnan K, Ng. Ing and Gopalakrishnan R 1999 Mater. Sci. Eng. 57 224-227
    • [46] Lu Y, Weng R, Hwang W and Yang Y 2001 Mater. Chem. Phys.72 278-280
    • [47] Cuong N, Kim D, Kang B, Kim C, Yu K and Yoon S 2006 J. . Electrochem. Soc. 153 G164-G167
    • [48] Min K, Chun K and Kim K 1996 J. Vac. Sci. Technol. 14 3263-3269
    • [49] Golan G, Axelevitch A, Margolin R and Rabinovitch E 2001 Microelectr. J. 32 61-67
    • [50] Cuong N, Phuong N, Kim D, Kim B, Kim C and Yoon S 2006 J. Vac. Sci. Technol. 24 682-685
    • [51] Scandurra A, Indelli G, Pignataro B, DiMarco S, Stefano M, Ravesi S and Pignataro S 2007 Surf. Interface Anal. 40 758-762
    • [52] Das A, Grabbe C and Hufnagel R 2008 Complexities in the deposition of thin film resistors, Capacitor and Resistor Technology Symposium (CARTS) 339-352
    • [53] Kang S, Yoon S, Suh S and Yoon D 2008 Thin Solid Films 516 3568-3571
    • [54] Hong S and Ravi R 2005 Microelectron. Eng. 83 206-212
    • [55] Na S, Park I, Park S, Jeong G and Suh S 2008 Thin Solid Films 516 5465-5469
    • [56] Wang C, Hsieh J and Li C 2004 Electrical and piezoresistive properties of TaN-Cu nanocomposite thin films Thin Solid Films 469-470 455-459
    • [57] Wang C, Hsieh J, Li C, Fu Y and Chen T 2005 Surface & Coatings Technology 193 173-177
    • [58] Reddy P, Bhagavat G and Jawalekar R 1980 Thin Solid Films 70 27-35
    • [59] Wuu D, Chan C, Horng R, Lin W, Chiu S and Wu Y 1999 Structural and electrical properties of Ta-Al thin films by magnetron sputtering, App. Surf. Sci. 144-145 315-318
    • [60] Yang B and Jia Y 1991 Tantalum/aluminium alloy resistive film containing aluminium 50at%, Vacuum, 42(16) 1073
    • [61] Yukiko O, Tajiri S, Aozono T, Okamoto A, Ogawa S and Mima H 2007 J. . Vac. Soc. Jp. 50 173-174
    • [62] Jankowski A 1998 Thin Solid Films 332 272-276
    • [63] Dong X, Wu J, Mao D and Mao L 2000 Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University 34 1610-1614
    • [64] Wen Y, Wang C, Nie M and Sun Y 2015 J. magn. Magn. Mater. 391, 22-25
    • [65] Tong P, Wang B-S and Sun Y-P 2013 Mn-based antiperovskite functional materials: Review of research. Chinese Phys. B 22 1-13 067501
    • [66] Ammar A H 1996 Electrical transport properties of manganese thin films. ELSEVIER Physica B 225 132- 136
    • [67] Braudaway D W 1999 Precision Resistors: A Review of Material Characteristics, Resistor Design, and Construction Practices. IEEE T. Instrum. Meas. 48(5). doi: 0018-9456/99
    • [68] Sun Y, Wang C, Chu L, Wen Y, Nie M and Liu F 2010 Scripta Materialia, 62 686-689
    • [69] Na Y, Wang C, Chu L, Ding L, Yan J, Xue Y and Chen X 2011 Elsevier Materials Letters, 65 3447-3449
    • [70] Aoyama M, Takenaka K and Ikuta H 2013 Journal of Alloys and Compounds 577 S314-S317
    • [71] Na Y, Wang C, Sun Y, Chu L, Nie M, Ji N and Wang J 2011 Mater. Res. Bull. 46 1022-1027
    • [72] Sun Y, Wang C, Na Y, Chu L, Wen Y and Nie M 2010 Mater. Res. Bull. 45 1230-1233.
    • [73] Oe T, Urano C, Kaneko N, Hadano M and Takenaka K 2013 Standard-resistor compounds with adjustable operating temperature Appl. Phys. Lett. 103 173518-1 doi: 10.1063/1.4826611
    • [74] Hamada T and Takenaka K 2012 Phase instability of magnetic ground state in antiperovskite Mn3ZnN: Giant magnetovolume effects related to magnetic structure. J. of Appl. Phys. 111 07A904. doi: 10.1063/1.3670052
    • [75] Qu B Y and Pan B C 2010 Nature of the negative thermal expansion in antiperovskite compound Mn[sub 3]ZnN J. of Appl. Phys. 108 113920. doi: 10.1063/1.3517824
    • [76] Kamishima K, Goto T, Nakagawa H, Miura N, Ohashi M, Mori N, Sasaki T and Kanomata T 2000 Phys. Rev. B 63 024426
    • [77] Asano K, Koyama K and Takenaka K 2008 Appl. Phys. Lett. 92 161909
    • [78] He T, Huang Q, Ramirez A.P, Wang Y, Regan K.A, Rogado N, Hayward M.A, Haas M.K, Slusky J.S,. Inumara K, Zandbergen H.W, Ong N.P and Cava R 2001 Nature 411 54
    • [79] Takenaka K, Ozawa A, Shibayama T, Kaneko N, Oe T and Urano C 2011 Extremely low temperature coefficient of resistance in antiperovskite Mn[sub 3]Ag[sub 1−x]Cu[sub x]N. Appl. Phys. Lett. 98 022103
    • [80] Na Y, Wang C, Chu L, Ding L, Ji N, Wang J-p and Chen X 2011 Mater. Lett. 65 2401-2403
    • [81] Oe T, Urano C, Hadano M, Ozawa A, Takenaka K and Kaneko N-h 2013 Optimization ofMn3Ag1−xCuxN Antiperovskite Compound Fabrication for Resistance Standard. IEEE T. Instrum. Meas. 62 1450-1453.
    • [82] Oe T, Urano C, Kaneko N-h, Eisaki H, Yoshida Y, Yamamoto A and Takenaka K 2014 Antiperovskite Manganese Nitride Standard Resistor IEEE T. Instrum. Meas. 5
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article