LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Parsons, Jonathan
Languages: English
Types: Doctoral thesis
Subjects: QC, TK
The relaxation of variable thickness strained silicon layers on 20% and 50% germanium composition virtual substrates have been quantified using two independent methods. High resolution X-ray diffraction offers a means to measure relaxation directly, and a defect etching technique has been developed from which relaxation can be determined by the measurement of dislocation densities. Comparisons between the relaxation of tensile strained silicon in this work and compressively strained Si1−xGex in other works, suggest that strained silicon is unusually stable to relaxation. Observation of dislocation structures with defect etching and transmission electron microscopy have shown that the additional stability arises from the interaction of dislocations which inhibits glide. Extended stacking faults, which only form when the strain is tensile (and are therefore absent in compressively strained Si1−xGex), are more effective at impeding dislocation glide and it is their increased density in thicker layers which yield enhanced stability, even after high temperature annealing.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2.14 Cross-sectional diagram showing the forces acting on a nucleated halfloop dislocation, as used in the People and Bean critical thickness model. Adapted from People and Bean [1985]. . . . . . . . . . . . . . . . . . .
    • 2.15 Graph showing the critical thickness regimes of Matthews and Blakelee (equation 2.13), and People and Bean (equation 2.15). . . . . . . . . .
    • 2.16 Cross sectional view showing a threading dislocation (a) gliding towards an orthogonal misfit dislocation, marked by the cross with surrounding strain field in grey, (b) being forced to glide in a smaller channel region, h∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    • 2.17 Graph showing the Freund dislocation pinning regime (equation 2.16), together with the critical thickness of Matthews and Blakeslee (equation 2.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    • 2.18 Schematic representation of the modified Frank-Read process showning (a) a splitting reaction, (b) the Frank-Read mechanism closing a halfloop, (c) expanding half-loop to reach the surface, and (d) a pile-up formed by the expansion of dislocation half-loops along two glide-planes. Adapted from LeGoues et al. [1992] . . . . . . . . . . . . . . . . . . .
    • 2.19 Schematic representation of a step graded virtual substrate, with misfit interfaces is arrowed. . . . . . . . . . . . . . . . . . . . . . . . . . . .
    • 2.22 Simplified hard sphere representations of a face-centred cubic lattice showing (a) stacking of the {111} planes, and (b) a top-down view of the stacking sequence. Taken from Cottrell [1964]. . . . . . . . . . .
    • 2.23 Simplified hard sphere representation of a cross section through a stacking fault (in grey) caused by one partial dislocation at point P, running into the plane of the page. Adapted from Kosevich [1979]. . . . . . . .
    • 2.24 Schematic diagram of the formation of an extended stacking fault in a tensile strained layer. Adapted from Mar´ee et al. [1987]. . . . . . . . .
    • 2.25 Cross-sectional view of a microtwin formed by the successive nucleation of 90◦ partial dislocations on adjacent glide-planes, which forms a step on the surface along its length. Adapted from Wegscheider and Cerva [1993]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    • 5.25 Image of the defect etched surface of a 20.0nm strained silicon layer (LG20-7), showing dislocations pinned by stacking faults, three of which are indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
    • 5.26 Fraction of pinned dislocations which are pinned by orthogonal stacking faults for (a) linearly graded and (b) terrace graded samples. Lines are for guidance only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.13 Graphs to show the relaxation of strained silicon on 50% virtual substrates which are (a) linearly graded and (b) terrace graded, as measured by HRXRD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
    • 6.14 XTEM image of a 8.2nm strained silicon layer (LG50-2), showing the presence of a stacking fault. . . . . . . . . . . . . . . . . . . . . . . . . 131
    • 6.15 XTEM image of a 33.2nm strained silicon layer (LG50-6), showing the presence of a microtwin. . . . . . . . . . . . . . . . . . . . . . . . . . . 132 S. Amelinckx. Dislocations in Particular Structures. In F. R. N. Nabarro, editor, Dislocations in Solids, volume 2. North Holland Publishing, 1979.
    • S. W. Bedell, D. K. Sadana, K. Fogel, H. Chen, and A. Domenicucci. Quick Turnaround Technique for Highlighting Defects in Thin Si/SiGe Bilayers. Electrochem. Solid St., 7:G105, 2004b.
    • A. Benninghoven, F. G. Ru¨denauer, and H. W. Werner. Secondary Ion Mass Spectroscopy: Basic Concepts, Instrumental Aspects, Applications, and Trends. John Wiley and Sons, 1987.
    • Y. Bogumilowicz, J. M. Hartmann, C. Di Nardo, P. Holliger, A. M. Papon, G. Rolland, and T. Billon. High-Temperature Growth of Very High Germanium Content SiGe Virtual Substrates. J. Cryst. Growth, 290:523, 2006.
    • K. R. Bray, W. Zhao, L. Kordas, R. Wise, McD. Robinson, and G. Rozgonyi. Electrical, Structural, and Chemical Analysis of Defects in Epitaxial SiGe-Based Heterostructures. J. Electrochem. Soc., 152:C310, 2005.
    • M. Bruel. Application of Hydrogen Ion Beams to Silicon On Insulator Material Technology. Nucl. Instrum. Meth. B, 108:313, 1996.
    • E. Bugiel and P. Zaumseil. Independent Determination of Composition and Relaxation of Partly Pseudomorphically Grown Si-Ge Layers on Silicon by a Combination of Standard X-Ray Diffraction and Transmission Electron Microscopy Measurements. Appl. Phys. Lett., 62:2051, 1993.
    • A. D. Capewell, T. J. Grasby, T. E. Whall, and E. H. C. Parker. Terrace Grading of SiGe for High-Quality Virtual Substrates. Appl. Phys. Lett., 81:4775, 2002.
    • J. W. Christian and A. G. Crocker. Dislocations and Lattice Transformations. In F. R. N. Nabarro, editor, Dislocations in Solids, volume 3. North Holland Publishing, 1979.
    • A. H. Cottrell. Theory of Crystal Dislocations. Blackie and Son, 1964.
    • J. H. Van der Merwe. Crystal Interfaces. Part II. Finite Overgrowths. J. Appl. Phys., 34:123, 1963.
    • J. P. Dismukes, L. Ekstrom, and R. J. Paff. Lattice Parameter and Density in Germanium-Silicon Alloys. J. Phys. Chem, 68:3021, 1964.
    • M. G. Dowsett. Depth Profiling Using Ultra-Low Energy Secondary Ion Mass Spectrometry. Appl. Surf. Sci., 203:5, 2003.
    • D. Dutarte, P. Warren, F. Provenier, F. Chollet, and A. P´erio. Fabrication of Relaxed Si1−xGex Layers on Si Substrates by Rapid Thermal Chemical Vapor Deposition. J. Vac. Sci. Technol. A, 12:1009, 1994.
    • M. Erdtmann and T. A. Langdo. The Crystallographic Properties of Strained Silicon Measured by X-Ray Diffraction. J. Mater. Sci. Mater. Electron., 17:137, 2006.
    • J. G. Fiorenza, G. Braithwaite, C. W. Leitz, M. T. Currie, J. Yap, F. Singaporewala, V. K. Yang VK, T. A. Langdo, J. Carlin, M. Somerville, A. Lochtefeld, H. Badawi, and M. T. Bulsara. Film Thickness Constraints for Manufacturable Strained Silicon CMOS. Semicond. Sci. Tech., 19:L4, 2004.
    • F. C. Frank and J. H. van der Merwe. One-Dimensional Dislocations. I. Static Theory. P. Roy. Soc. Lond. A, 198:205, 1949.
    • P. E. Hellberg, S. L. Zhang, F. M. d'Heurle, and C. S. Petersson. Oxidation of SiliconGermanium Alloys. II. A Mathematical Model. J. Appl. Phys., 82:5779, 1997.
    • M. A. Herman and H. Sitter. Molecular Beam Epitaxy - Fundamentals and Current Status, volume 7 of Springer Series in Materials Science. Springer-Verlag, 1989.
    • H. J. Herzog. Crystal Structure, Lattice Parameters and Liquidus-Solidus Curve of the SiGe System. In E. Kasper, editor, Properties of Strained and Relaxed Silicon Germanium, volume 12 of EMIS Data Reviews Series. INSPEC, 1995.
    • H. J. Herzog, T. Hackbarth, G. H¨ock, M. Zeuner, and U. K¨onig. SiGe-Based FETs: Buffer Issues and Device Results. Thin Solid Films, 380:36, 2000.
    • J. P. Hirthe and J. Lothe. Theory of Dislocations. JWS, 2nd edition, 1982.
    • B. Holla¨nder, D. Buca, St. Lenk, S. Mantl, H. J. Herzog, Th. Hackbarth, R. Loo, M. Caymax, M. J. M¨orschba¨cher, and P. F. P. Fichtner. Strain Relaxation of Pseudomorphic Si1−xGex/Si(100) Heterostructures by Si+ Ion Implantation. Nucl. Instrum. Meth. B, 242:568, 2006.
    • D. C. Houghton. Strain Relaxation Kinetics in Si1−xGex/Si Heterostructures. J. Appl. Phys., 70:2136, 1991.
    • D. Hull and D. J. Bacon. Introduction to Dislocations. Butterworth-Heinemann, 4rd edition, 2002.
    • R. Hull and J. C. Bean. Nucleation of Misfit Dislocations in Strained-Layer Epitaxy in the GexSi1−x/Si System. J. Vac. Sci. Technol. A, 7:2580, 1989.
    • R. Hull, J. C. Bean, L. J. Peticolas, D. Bahnck, B. E. Weir, and L. C. Feldman. Quantitative Analysis of Strain Relaxation in GexSi1−x/Si(110) Heterostructures and an Accurate Determination of Stacking Fault Energy in GexSi1−x Alloys. Appl. Phys. Lett., 61:2802, 1992.
    • A. M. Kosevich. Crystal Dislocations and the Theory of Elasticity. In F. R. N. Nabarro, editor, Dislocations in Solids, volume 1. North Holland Publishing, 1979.
    • M. S. Kulkarni. A Review and Unifying Analysis of Defect Decoration and Surface Polishing by Chemical Etching in Silicon Processing. Ind. Eng. Chem., 42:2558, 2003.
    • I. Lauer, T. A. Langdo, Z. Y. Cheng, J. G. Fiorenza, G. Braithwaite, M. T. Currie, C. W. Leitz, A. Lochtefeld, H. Badawi, M. T. Bulsara, M. Somerville, and D. A. Antoniadis. Fully Depleted n-MOSFETs on Supercritical Thickness Strained SOI. IEEE Electr. Device Lett., 25:83, 2004.
    • A. Lefebvre, C. Herbeaux, and J. Di Persio. Interactions of Misfit Dislocations in InxGa1−xAs/GaAs Interfaces. Philos. Mag. A, 63:471, 1991.
    • M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu. Influence of Misfit Dislocations on the Surface Morphology of Si1−xGex Films. Appl. Phys. Lett., 66:724, 1995.
    • S. H. Olsen, E. Escobedo-Cousin, J. B. Varzgar, R. Agaiby, J. Seger, P. Dobrosz, S. Chattopadhyay, S. J. Bull, A. G. O'Neill, P. E. Hellstrom, J. Edholm, M. Ostling, K. L. Lyutovich, M. Oehme, and E. Kasper. Control of Self-Heating in Thin Virtual Substrate Strained Si MOSFETs. IEEE T. Electron. Dev., 53:2296, 2006.
    • H. Trinkaus, B. Holla¨nder, St. Rongen, S. Mantl, H. J. Herzog, J. Kuchenbecker, and Th. Hackbarth. Strain Relaxation Mechanism for Hydrogen-Implanted Si1−xGex/Si(100) Heterostructures. Appl. Phys. Lett., 76:3552, 2000.
    • Y. H. Xie, G. H. Gilmer, C. Roland, P. J. Silverman, S. K. Buratto, J. Y. Cheng, E. A. Fitzgerald, A. R. Kortan, S. Schuppler, M. A. Marcus, and P. H. Citrin. Semiconductor Surface Roughness: Dependence on Sign and Magnitude of Bulk Strain. Phys. Rev. Lett., 73:3006, 1994.
    • J. Yang, G. W. Neudeck, and J. P. Denton. Unique Method to Electrically Characterize a Single Stacking Fault in Silicon-on-Insulator Metal-Oxide-Semiconductor-Field-Effect Transistors. Appl. Phys. Lett., 77:4034, 2000.
    • J. Zho and D. J. H. Cockayne. Theoretical Consideration of Equilibrium Dissociation Geometries of 60◦ Misfit Dislocations in Single Semiconductor Heterostructures. J. Appl. Phys., 77:2448, 1995.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article