Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kinnavane, Lisa (2015)
Languages: English
Types: Doctoral thesis
Subjects: BF
Recognition memory is the ability to distinguish novel from familiar stimuli. This thesis explores opposing models of recognition memory that alternatively assume that the perirhinal cortex and hippocampus (regions of the medial temporal lobe) must functionally interact to support recognition memory or that the perirhinal cortex can support this process independently. Additionally, the way in which these areas differentially interact to support learning about novel compared to familiar stimuli was examined.\ud To achieve this, rats with lesions to the hippocampus or perirhinal cortex were given tests of object recognition memory or allowed to explore novel stimuli, after which, regional neuronal activity and network interactions were explored. This was achieved by immediate-early gene imaging; the expression of c-fos was used as a marker of neuronal activity, allowing for the assessment of regional activity at an extremely high anatomical resolution. Network interactions were explored using structural equation modelling; a statistical technique that made it possible to test if the observed activity could be mapped on to known anatomical pathways. In this way, network dynamics supporting these behavioural tasks were explored. Thus, the functional interdependence of the hippocampus and perirhinal cortex was tested both when the brain was intact and following lesions. This was done at multiple levels; behaviourally, at the level of regional activation and at the level of systems interactions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Trends in Cognitive Sciences. 19, 302-303.
    • Insausti, R., Herrero, M.T., & Witter, M.P. (1997). Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.
    • Hippocampus, 7, 146-183.
    • Iordanova, M.D., Burnett, D.J., Aggleton, J.P., Good, M.A., & Honey, R.C. (2009). The role of the hippocampus in mnemonic integration and retrieval: complementary evidence from lesion and inactivation studies. European Journal of Neuroscience, 30, 2177-2189.
    • Jackson-Smith, P., Kesner, R.P., & Chiba, A.A. (1993). Continuous recognition of spatial and nonspatial stimuli in hippocampal-lesioned rats. Behav. Neural Biol. 59, 107-119.
    • Jenkins, T.A., Amin, E., Harold, G.T., Pearce, J.M., & Aggleton, J.P. (2003). Different patterns of hippocampal formation activity associated with different spatial tasks: a Fos imaging study in rats. Experimental Brain Research, 151, 514-523.
    • Jenkins, T.A., Amin, E., Pearce, J.M., Brown, M.W., & Aggleton, J. P. (2004). Novel spatial arrangements of familiar stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices; a c-fos expression study. Neuroscience, 124, 43-52.
    • Jenkins, T.A., Dias, R., Amin, E., Brown, M.W., & Aggleton, J.P. (2002). Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats. Journal of Neuroscience, 22, 5230-523.
    • Jenkins, T.A., Vann, S.D., Amin, E., & Aggleton, J.P. (2004). Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats? European Journal of Neuroscience, 19, 3291-3304.
    • Jeneson, A., Kirwan, C.B., Hopkins, R.O., Wixted, J.T., & Squire, L.R. (2010).
    • Recognition memory and the hippocampus: A test of the hippocampal contribution to recollection and familiarity. Learning & Memory, 17, 852-859.
    • Jo, Y.S., & Lee, I. (2010). Disconnection of the hippocampal-perirhinal cortical circuits severely disrupts object-place paired associative memory. Journal of Neuroscience, 30, 9850 -9858.
    • Jones, P.M., Whitt, E.J., Robinson, J. (2012). Excitotoxic perirhinal cortex lesions leave stimulus-specific habituation of suppression to lights intact. Behavioural Brain Research, 229, 365-371.
    • Jones, B.F., & Witter, M.P. (2007). Cingulate cortex projections to the parahippocampal region and hippocampal formation in the rat. Hippocampus, 17, 957-976.
    • Katche, C., Bekinschtein, P., Slipczuk, L., Goldin, A., Izquierdo, I.A., Cammarota, M., & Medina, J.H. (2010). Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proceedings of the National Academy of Science, 107, 349-354.
    • Kent, B.A., & Brown, T.H. (2012). Dual Functions of Perirhinal Cortex in Fear Conditioning. Hippocampus, 22, 2068-2079.
    • Kesner, R.P., Bolland, B.L., & Dakis, M. (1993). Memory for spatial locations, motor responses, and objects: triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Experimental Brain Research 93, 462-470.
    • Kesner, R.P., Gilbert, P.E., & Barua, L.A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behavioral Neuroscience, 116, 286-290.
    • Kesner, R.P., Hunsaker, M.R., & Ziegler, W. (2010). The role of the dorsal CA1 and ventral CA1 in memory for the temporal order of a sequence of odors. Neurobiology of Learning and Memory, 93, 111-116.
    • Kensinger, E.A., & Schacter, D.L. (2006). Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. Journal of Neuroscience, 26, 2564 -2570.
    • Kholodar-Smith, D.B., Boguszewski, P., Brown, T.H. (2008a). Auditory trace fear conditioning requires perirhinal cortex. Neurobiology of Learning and Memory, 90, 537-543.
    • Kholodar-Smith, D.B., Allen, T.A., & Brown, T.H. (2008b). Fear conditioning to discontinuous auditory cues requires perirhinal cortical function. Behavioral Neuroscience, 5, 1178-1185.
    • Kim, J., & Horwitz, B. (2009). How well does structural equation modeling reveal abnormal brain anatomical connections? An fMRI Simulation Study. NeuroImage, 45, 1190-1198.
    • King, J.A., Trinkler, I., Hartley, T., Vargha-Khadem, F., & Burgess, N. (2004). The hippocampal role in spatial memory and the familiarity-recollection distinction: A case study. Neuropsychology, 18, 205-417.
    • Kinnavane, L., Amin, E., Horne, M., & Aggleton, J.P. (2014). Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus. European Journal of Neuroscience, 40, 3720-3734.
    • Kirwan, C.B., Wixted, J.T., & Squire, L.T. (2010). A demonstration that the hippocampus supports both recollection and familiarity. Proceedings of the National Academy of Science, 107, 344-348.
    • Kivy, P., Earl, R.W., & Walker, E.L. (1956). Stimulus context and satiation. Journal of Comparative and Physiological Psychology, 49, 90-92.
    • Knierim, J.J., Lee, I., & Hargreaves, E.L. (2006). Hippocampal place cells: Parallel input streams, subregional processing and implications for episodic memory. Hippocampus 16, 755-764.
    • Knierim, J.J., Neunuebel, J.P., & Deshmukh, S.S. (2014). Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130369.
    • Koganezawa, N., Taguchi, A., Tominaga, T., Ohara, S., Tsutsui, K.-I., Witter, M.P., & Iijima, T. (2008). Significance of the deep layers of entorhinal cortex for transfer of both perirhinal and amygdala inputs to the hippocampus. Neuroscience Research, 61, 172- 181.
    • Komorowski, R.W., Manns, J.R., Eichenbaum, H. (2009). Robust conjunctive itemplace coding by hippocampal neurons parallels learning what happens where. Journal of Neuroscience, 29, 9918-9929.
    • Kovacs, K.J. (2008). Measurement of immediate-early gene activation- c-fos and beyond. Journal of Neuroendocrinology, 20, 665-672.
    • Kraus, B.J., Robinson II, R.J., White, J.A., Eichenbaum, H., & Hasselmo, M.E., (2013).
    • Hippocampal “time cells”: Time versus path integration. Neuron, 78, 1090-1101.
    • Lanahan, A., & Worley P. (1998). Immediate-early genes and synaptic function.
    • Neurobiology of Learning and Memory, 70, 37-43.
    • Lanciego, J.L., & Wouterlood, F.G (2011). A half century of experimental neuroanatomical tracing. Journal of Chemical Neuroanatomy, 42, 157-183.
    • Langston, R.F., Stevenson, C.H., Wilson, C.L., Saunders, I., & Wood, E.R. (2010). The role of hippocampal subregions in memory for stimulus associations. Behavioural Brain Research, 215, 275-291.
    • Langston, R.F., & Wood, E.R. (2010). Associative recognition and the hippocampus: Differential effects of hippocampal lesions on object-place, object-context and objectplace-context memory. Hippocampus, 20, 1139-1153.
    • Lee, A.C., Buckley, M.J., Pegman, S.J., Spiers, H., Scahill, V.L., Gaffan, D., Bussey, T.J., Davies, R.R., Kapur, N., Hodges, J.R., & Graham, K.S. (2005a). Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus, 15, 782- 797.
    • (2006). Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: A double dissociation in dementia. Journal of Neuroscience, 26, 5198 -5203.
    • Lee, A.C., Bussey, T.J., Murray, E.A., Saksida, L.M., Epstein, R.A., Kapur, N., Hodges, J.R., & Graham, K.S. (2005b). Perceptual deficits in amnesia: challenging the medial temporal lobe 'mnemonic' view. Neuropsychologia, 43, 1-11.
    • Lee, I., & Kesner, R.P. (2004). Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning.
    • Hippocampus, 14, 301-310.
    • Lee, A.C.H., Levi, N., Davies, R.R., Hodges, J.R., & Graham, K.S. (2007). Differing profiles of face and scene discrimination deficits in semantic dementia and Alzheimer's disease. Neuropsychologia, 45, 2135-2146.
    • Lee, I., Hunsaker, M.R., & Kesner, R.P. (2005). The role of hippocampal subregions in detecting spatial novelty. Behavioral Neuroscience, 119, 145-153.
    • Lee, H., Wang, C., Deshmukh, S.S., Knierim, J.J. (2015). Neural population evidence of functional heterogeneity along the CA3 transverse axis: Pattern completion versus pattern separation. Neuron, 87, 1093-1105.
    • Lee, H.J., Youn, J.M., O, M.J., Gallagher, M., & Holland, P.C. (2006). Role of substantia nigra-amygdala connections in surprise-induced enhancement of attention.
    • The Journal of Neuroscience, 26, 6077-6081.
    • Leutgeb, J.K., Leutgeb, S., Moser, M.B., & Moser, E.I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315, 961-966.
    • Lindquist, D.H., Jarrard, L.E., & Brown, T.H. (2004). Perirhinal cortex supports delay fear conditioning to rat ultrasonic social signals. Journal of Neuroscience, 24, 3610 - 3617.
    • Lisman, J.E., & Grace, A.A. (2005). The hippocampal-VTA loop: Review controlling the entry of information into long-term memory. Neuron, 46, 703-713.
    • Lisman, J.E., Grace, A.A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 34, 536-547.
    • Liu, P., & Bilkey, D. K. (1998a). Excitotoxic lesions centered on perirhinal cortex produce delay- dependent deficits in a test of spatial memory. Behavioral Neuroscience, 112, 512-524.
    • Liu, P., & Bilkey, D. K. (1998b). Lesions of perirhinal cortex produce spatial memory deficits in the radial maze. Hippocampus, 8, 114-121.
    • Mandler, G. (1980). Recognizing - the Judgment of Previous Occurrence. Psychological Review, 87, 252-271.
    • Manns, J.R., & Eichenbaum, H. (2009). A cognitive map for object memory in the hippocampus. Learning & Memory, 16, 616-624.
    • Manns, J.R., Howard, M.W., & Eichenbaum, H. (2007). Gradual changes in hippocampal activity support remembering the order of events. Neuron, 56, 530-540.
    • Manns, J.R., Hopkins, R.O., Reed, J.M., Kitchener, E.G., & Squire, L.R. (2003).
    • Recognition Memory and the Human Hippocampus. Neuron, 37, 171-180.
    • Maren, S., & Fanselow M.S. (1997). Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiology of Learning and Memory, 67, 124-149.
    • Martin, C.B., Bowles, B., Mirsattari, S.M., & Kohler, S. (2011). Selective familiarity deficits after left anterior temporal-lobe removal with hippocampal sparing are material specific. Neuropsychologia, 49, 1870-1878.
    • Martin, C.B., Mirsattari, S.M., Pruessner, J.C., Pietrantonio, S., Burneo, J.G., HaymanAbello, B., & Kohler, S. (2012). Déjà vu in unilateral temporal-lobe epilepsy is associated with selective familiarity impairments on experimental tasks of recognition memory. Neuropsychologia, 50, 2981-2991.
    • Mayes, A.R., Holdstock, J.S., Isaac, C.L., Hunkin, N.M., & Roberts, N. (2002). Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus, 12, 325-340.
    • Mayes, A. R., Holdstock, J. S., Isaac, C. L., Montaldi, D., Grigor, J., Gummer, A., Cariga, P., Downes, J.J., Tsivilis, D., Gaffan, D., Gong, Q., & Norman, K.A. (2004).
    • Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus, 14, 763-784.
    • Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11, 126-135.
    • McIntosh, A.R. (2002). Application of covariance structural equation modeling to the exploration of neurocognitive networks. In: Handbook of brain theory and neural networks, 2nd Edition (Arbib M.A., ed.). pp. 300-304. Cambridge, Massachusetts: MIT Press.
    • McIntosh, A.R., & Gonzalez-Lima, F. (1991). Structural modeling of functional neural pathways mapped with 2-deoxyglucose: effects of acoustic startle habituation on the auditory system. Brain Research, 547, 295-302.
    • (2014). Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron, 83, 202-215.
    • McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser E.I.,& Moser, M.B. (2006). Path integration and the neural basis of the 'cognitive map'. Nature Review Neuroscience, 7, 663-678.
    • McTighe, S. M., Cowell, R. A., Winters, B. D., Bussey, T. J., & Saksida, L. M. (2010).
    • Paradoxical false memory for objects after brain damage. Science, 330, 1408-1410.
    • Meunier, M., Bachevalier, J., Mishkin, M., & Murray, E. A. (1993). Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. Journal of Neuroscience, 13, 5418-5432.
    • Meyer, T., Walker, C., Cho, R.Y., & Olson, C.R. (2014). Image familiarization sharpens response dynamics of neurons in inferotemporal cortex. Nature Neuroscience, 17, 1388- 1394.
    • Montaldi, D., Spencer, T.J., Roberts, N., & Mayes, A.R. (2006). The neural system that mediates familiarity memory. Hippocampus, 16, 504-520.
    • Morris, R.G.M., Garrud, P., Rawlins, J.N.P., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681-683.
    • Moser, E., Moser, M.B., & Andersen, XXX. (1993). Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. Journal of Neuroscience, 13, 3916-3925.
    • Moser, E.I., Kropff, E., & Moser, M.B. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 69-89.
    • Mumby, D.G. (2001). Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behavioral Brain Research, 127, 159-181.
    • Mumby, D.G., Gaskin, S., Glenn, M.J., Schramek, T.E., & Lehmann, H. (2002).
    • Hippocampal damage and exploratory preferences in rats: Memory for objects, places, and contexts. Learning & Memory, 9, 49-57.
    • Mumby, D.G., Pinel, J.P.J., & Wood, E.R. (1990). Nonrecurring-items delayed nonmatching-to-sample in rats: A new paradigm for testing nonspatial working memory.
    • Psychobiology, 18, 321-326.
    • Mumby, D.G., & Pinel, J.P. (1994). Rhinal cortex lesions and object recognition in rats.
    • Behavioral Neuroscience, 108, 11-18.
    • Mumby, D.G., Pinel, J.P.J., Kornecook, T.J., Shen, M.J., & Redlia, V.A. (1995).
    • Memory deficits following lesions of hippocampus or amygdala in rat object recognition: Assessment by an object-memory test battery. Psychobiology, 23, 26-36.
    • Mumby, D.G., Piterkin, P., Lecluse, V., & Lehmann, H. (2007). Perirhinal cortex damage and anterograde object-recognition in rats after long retention intervals.
    • Behavioural Brain Research, 185, 82-87.
    • Mumby, D.G., Wood, E.R., Duva, C.A., Kornecook, T.J., Pinel, J.P., & Phillips, A.G., (1996). Ischemia-induced object-recognition deficits in rats are attenuated by hippocampal ablation before or soon after ischemia. Behavioral Neuroscience 110, 266- 281.
    • Mumby, D.G., Wood, E.R., & Pinel, J.P.J. (1992). Object-recognition memory is only mildly impaired in rats with lesions of the hippocampus and amygdala.
    • Psycholobiology, 20, 18-27.
    • Mura, A., Murphy, C.A., Feldon, J., & Jongen-Relo, A.L. (2004). The use of stereological counting methods to assess immediate early gene immunoreactivity. Brain Research, 1009, 120-128.
    • Murray, E.A., & Bussey, T.J. (1999). Perceptual-mnemonic functions of the perirhinal cortex. Trends in Cognitive Sciences. 3, 142-151.
    • Murray, E.A., & Mishkin, M. (1985). Amygdalectomy impairs crossmodal association in monkeys. Science, 228, 604-606.
    • Murray, E.A., & Mishkin, M. (1986). Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. Journal of Neuroscience, 6, 1991-2003.
    • Murray, E.A., & Mishkin, M. (1998). Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. Journal of Neuroscience, 18, 6568-6582.
    • Murray, E. A., & Richmond, B.J. (2001). Role of perirhinal cortex in object perception, memory, and associations. Current Opinion in Neurobiology, 11, 188-193.
    • Murray, E. A., Bussey, T. J., & Saksida, L. M. (2007). Visual perception and memory: A new view of medial temporal lobe function in primates and rodents. Annual Review of Neuroscience, 30, 99-122.
    • Murray, E.A., & Wise, S.P. (2012). Why is there a special issue on perirhinal cortex in a journal called Hippocampus? The perirhinal cortex in historical perspective.
    • Hippocampus, 22, 1941-1951.
    • Naber, P.A., Caballero-Bleda, M., Jorritsma-Byham, B., & Witter, M.P. (1998). Parallel input to the hippocampal memory system through peri- and postrhinal cortices.
    • Neuroreport, 8, 2617-2621.
    • Nakashiba, T., Young, J.Z., McHugh, T.J., Buhl, D.L., Tonegawa, S. (2008). Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning. Science, 319, 1260-1264.
    • Nelson, A.J.D., & Vann, S.D. (2014). Mammillothalamic tract lesions disrupt tests of visuo-spatial memory. Behavioral Neuroscience, 128, 494-503.
    • Nemanic, S., Alvarado, M.C., & Bachevalier, J. (2004). The hippocampal/parahippocampal regions and recognition memory: Insights from visual paired comparison versus object-delayed nonmatching in monkeys. Journal of Neuroscience, 24, 2013-2026.
    • Olarte-Sánchez, C.M., Kinnavane, L., Amin, A., & Aggleton, J.P. (2014). Contrasting networks for recognition memory and recency memory revealed by immediate-early gene imaging in the rat. Behav Neurosci, 128, 504-522.
    • Olton, D.S., Becker, J.T., & Handelmann, G.E. (1979). Hippocampus, space and memory. Behavioral and Brain Sciences, 2, 313-365.
    • Robitsek, R.J., Fortin, N.J., Koh, M.T., Gallagher, M., & Eichenbaum, H. (2008).
    • Journal of Neuroscience, 28, 8945-8954.
    • Rolls, E.T., Cahusac, P.M.B., Feigenbaum, J.D., & Miyashita, Y. (1993). Responses of single neurons in the hippocampus of the macaque related to recognition memory.
    • Experimental Brain Research 93, 299-306.
    • Romberg, C., McTighe, S.M., Heath, C.J., Whitcomb, D.J., Cho, K., Bussey, T.J., & Saksida, L.M. (2012). False recognition in a mouse model of Alzheimers disease: Rescue with sensory restriction and memantine. Brain: A Journal of Neurology, 135, 2103-2114.
    • Rossato, J.I., Bevilaqua, L.R., Myskiw, J.C., Medina, J.H., Izquierdo, I., & Cammarota, M. (2007). On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learning & Memory, 14, 36-46.
    • Rothblat, L.A., & Kromer, L.F. (1991). Object recognition memory in the rat: the role of the hippocampus. Behavioural Brain Research 42, 25-32.
    • Rudebeck, S.R., Scholz, J., Millington, R., Rohenkohl, G., Johansen-Berg, H., & Lee, A.C. (2009). Fornix microstructure correlates with recollections but not familiarity memory. Journal of Neuroscience, 29, 14987-14992.
    • Ruth, R.E., Collier, T.J., & Routtenberg, A. (1988). Topographical relationship between the entorhinal cortex and the septotemporal axis of the dentate gyrus in rats: II. Cells projecting from lateral entorhinal subdivisions. Journal of Comparative Neurology, 270, 506-516.
    • Rutishauser, U., Mamelak, A.N., & Schuman, E.M. (2006). Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex.
    • Neuron, 49, 805-813.
    • Sacchetti, B., Ambrogi Lorenzini, C., Baldi, E., Tassoni, G., & Bucherelli, C. (1999).
    • Auditory thalamus, dorsal hippocampus, basolateral amygdala, and perirhinal cortex role in the consolidation of conditioned freezing to context and to acoustic conditioned stimulus in the rat. Journal of Neuroscience, 19, 9570-9578.
    • Saksida, L.M., Bussey, T.J., Buckmaster, C.A., & Murray, E.A. (2006). No effect of hippocampal lesions on perirhinal cortex-dependent feature-ambiguous visual discriminations. Hippocampus, 16, 421-430.
    • Saksida, L.M., Bussey, T.J., Buckmaster, C.A., & Murray, E.A. (2007). Impairment and facilitation of transverse patterning after lesions of the perirhinal cortex and hippocampus, respectively. Cerebral Cortex, 17, 108-115.
    • Shrager, Y., Gold, J.J., Hopkins, R.O., & Squire, L.R. (2006). Intact visual perception in memory impaired patients with medial temporal lobe lesions. Journal of Neuroscience, 26, 2235-2240.
    • Simons, J.S., Verfaellie, M., Hodges, J.R., Lee, A.C., Graham, K.S., Koutstaal, W., Schacter, D.L., & Budson, A.E. (2005). Failing to get the gist: Reduced false recognition of semantic associates in semantic dementia. Neuropsychology,19, 353-361.
    • Staresina, B.P., Fell, J., Do Lam, A.T., Axmacher, N., & Henson, R.N. (2012). Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex. Nature Neuroscience, 15, 1167-73.
    • Swank, M.W., Ellis, A.E., & Cochran, B.N. (1996). c-Fos antisense blocks acquisition and extinction of conditioned taste aversion in mice. NeuroReport, 7, 1866-1870.
    • Swanson, L.W., & Cowan, W.M. (1975). Hippocampo-hypothalamic connections: Origin in subicular cortex, not ammon's horn. Science, 189, 303-304.
    • Swanson, L.W. (1992). Brain maps: structure of the rat brain, Elsevier, Amsterdam.
    • Tabachnick, B.G., & Fidell, L.S. (2001). Using Multivariate Statistics, 4th edn. Allyn & Bacon, Needham, MA.
    • Tafazoli, S., Di Filippo, A., & Zoccolan, D. (2012). Transformation-tolerant object recognition in rats revealed by visual priming. Journal of Neuroscience, 32, 21-34.
    • Vann, S.D., Brown, M.W., Erichsen, J.T., & Aggleton, J.P. (2000). Using Fos Imaging in the Rat to Reveal the Anatomical Extent of the Disruptive Effects of Fornix Lesions.
    • Journal of Neuroscience, 20, 8144-8152.
    • Vann, S.D., Tsivilis, D., Denby, C.E., Quamme, J., Yonelinas, A.P., Aggleton, J.P., Montaldi, D., & Mayes, A.R. (2009). Impaired recollection but spared familiarity in patients with extended hippocampal system damage: convergence across three methods.
    • Proceedings of the National Academy of Science, 106, 5442-5447.
    • Wan, H., Warburton, E.C., Zhu, X.O., Koder, T.J., Park, Y., Aggleton, J.P., Cho, K., Bashir, Z.I., & Brown, M.W. (2004). Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. European Journal of Neuroscience, 20, 2214-2224.
    • Yanike, M., Wirth, S., & Suzuki, W.A. (2004). Representation of well-learned information in the monkey hippocampus. Neuron, 3, 477-487.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article