LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gajda, I.
Languages: English
Types: Doctoral thesis
Subjects:
The ultimate goal of this thesis was to investigate and produce an MFC with self-sustainable cathode so it could be implemented in real world applications. Using methods previously employed [polarisation curve experiments, power output measurements, chemical assays for determining COD in wastewater and other elements present in anolyte or catholyte, biomass assessments] and with a focus on the cathode, experiments were conducted to compare and contrast different designs, materials and nutrient input to microbial fuel cells with appropriate experimental control systems.\ud \ud Results from these experiments show that: Firstly, the choice of polymeric PEM membrane showed that the most effective materials in terms of power performance were cation exchange membranes. In terms of cost effectiveness the most promising was CM-I, which was the preferred separator for later experiments.\ud \ud Secondly, a completely biotic MFC with the algal cathode was shown to produce higher power output (7.00 mW/m2) than the abiotic control (1.52 mW/m2). At the scale of the experimental system, the reservoir of algal culture produced sufficient dissolved oxygen to serve the MFCs in light or dark conditions. To demonstrate usable power, 16 algal cathode-designed MFCs were used to power a dc pump as a practical application.\ud \ud It has been presented that the more power the MFC generates, the more algal biomass will be harvested in the connected photoreactor. The biomass grown was demonstrated to be a suitable carbon-energy resource for the same MFC units in a closed loop scenario, whereby the only energy into the system was light.\ud \ud In the open to air cathode configuration various modifications to the carbon electrode materials including Microporous Layer (MPL) and Activated Carbon (AC) showed catholyte synthesis directly on the surface of the electrode and elemental extraction such as Na, K, Mg, from wastewater in a power dependent manner. Cathode flooding has been identified as an important and beneficial factor for the first time in MFCs, and has been demonstrated as a carbon capture system through wet scrubbing of carbon dioxide from the atmosphere. The captures carbon dioxide was mineralised into carbonate and bicarbonate of soda (trona). The novel inverted, tubular MFC configuration integrates design and operational simplicity showing significantly improved performance rendering the MFC system feasible for electricity recovery from waste. The improved power (2.58 mW) from an individual MFC was increased by 5-fold compared to the control unit, and 2-fold to similar sized tubular systems reported in the literature; moreover it was able to continuously power a LED light, charge a mobile phone and run a windmill motor, which was not possible before.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Control Theory ............................................................................................................................63
    • Methods specific to the experiment ...................................................................................... 65
    • 4th Pin connection to poise MFC voltage. Power “boost” ...................................................... 66 Open to air Cathode ....................................................................................................................113
    • 5.1 INTRODUCTION.................................................................................................................................. 113 5.1.1 Methods specific to the experiment .................................................................................... 114 5.1.2 Results and discussion ......................................................................................................... 115 Direct contact of MPL based electrode and membrane ...........................................................115 MPL based electrode for improved power ...............................................................................118
    • 5.1.3 Conclusions .......................................................................................................................... 120 WATER FORMATION AT THE CATHODE AND SODIUM RECOVERY ................................................................... 121
    • 5.2.1 Introduction ......................................................................................................................... 121
    • 5.2.2 Methods specific to the experiment .................................................................................... 123
    • 5.2.3 Results and discussion ......................................................................................................... 124
    • 5.2.4 Polarisation curve experiment ..................................................................................................124 Catholyte accumulation ............................................................................................................125 Relationship between catholyte accumulation and power generation ....................................127 Analysis of the accumulated catholyte .....................................................................................129 Conductivity and pH ............................................................................................................129 EDX and SEM........................................................................................................................130 GC MS and ICP OES ..............................................................................................................130 XRD ......................................................................................................................................131 Significance of catholyte accumulation to environmental cleanup ..........................................133 Sodium recovery through bioproduction..................................................................................133
    • Control of catholyte alkalinity.............................................................................................. 134 Carbon capture .........................................................................................................................134 5.2.5 Conclusions .......................................................................................................................... 135
    • 5.3 ELECTRO-OSMOTIC-BASED CATHOLYTE PRODUCTION ................................................................................. 135 5.3.1 Introduction ......................................................................................................................... 136 5.3.2 Materials and Methods specific to the experiment ............................................................. 137 5.3.3 Results and discussion ......................................................................................................... 137
    • 5.3.4 Power performance and catholyte generation .........................................................................137 Catholyte properties .................................................................................................................141
    • Conclusions .......................................................................................................................... 144 Introduction ..............................................................................................................................151 Methods specific to the experiment .........................................................................................152 Results-Maturing and catholyte formation...............................................................................153 Results-Powering a LED by a single MFC...................................................................................154 Powering a mobile phone by a single MFC ...............................................................................156 Powering a DC motor ................................................................................................................157 Discussion .................................................................................................................................157 Conclusions and outlook ...........................................................................................................159
    • Microbially-Assisted Electrosynthesis in ceramic MFCs with electricity generation ............ 161
    • Tanaka, K., Tamamushi, R. & Ogawa, T. (1985) Bioelectrochemical fuel‐cells operated by the cyanobacterium, Anabaena variabilis [online]. Journal of Chemical Technology & Biotechnology. 35 (3), pp. 191-197. [Accessed 9 September 2015].
    • Tang, H., Qi, Z., Ramani, M. & Elter, J.F. (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode [online]. Journal of Power Sources. 158 (2), pp. 1306-1312. [Accessed 29 May 2015].
    • Tao, X. & Xiaoqin, L. (2008) Peanut shell activated carbon: characterization, surface modification and adsorption of Pb 2+ from aqueous solution [online]. Chinese Journal of Chemical Engineering. 16 (3), pp. 401-406. [Accessed 9 September 2015].
    • Tender, L.M., Gray, S. a., Groveman, E., Lowy, D. a., Kauffman, P., Melhado, J., Tyce, R.C., Flynn, D., Petrecca, R. & Dobarro, J. (2008) The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy [online]. Journal of Power Sources. 179 (2), pp. 571-575. [Accessed 4 September 2014].
    • Di Termini, I., Prassone, A., Cattaneo, C. & Rovatti, M. (2011) On the nitrogen and phosphorus removal in algal photobioreactors [online]. Ecological Engineering. 37 (6), pp. 976-980. [Accessed 21 January 2014].
    • Thorn, R.M.S., Lee, S.W.H., Robinson, G.M., Greenman, J. & Reynolds, D.M. (2012) Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. [online]. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 31 (5), pp. 641-653. [Accessed 7 May 2014].
    • Thurston, C.F., Bennetto, H.P., Delaney, G.M., Mason, J.R., Roller, S.D. & Stirling, J.L. (1985) Glucose Metabolism in a Microbial Fuel Cell. Stoichiometry of Product Formation in a Thionine-mediated Proteus vulgaris Fuel Cell and its Relation to Coulombic Yields [online]. Microbiology. 131 (6), pp. 1393-1401. [Accessed 8 September 2014].
    • U.S. Energy Information Agency (2013) International Energy Outlook 2013. Available from: http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdfdoi:EIA0484(2013).
    • Velasquez-Orta, S.B., Head, I.M., Curtis, T.P. & Scott, K. (2011) Factors affecting current production in microbial fuel cells using different industrial wastewaters. [online]. Bioresource Technology. 102 (8), pp. 5105-5112. [Accessed 20 August 2014].
    • Venkata Mohan, S., Srikanth, S., Chiranjeevi, P., Arora, S. & Chandra, R. (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. [online]. Bioresource Technology. 166, pp. 566-574. [Accessed 4 July 2014].
    • Venkatachalapathy, R., Davila, G. & Prakash, J. (1999) Catalytic decomposition of hydrogen peroxide in alkaline solutions [online]. Electrochemistry Communications. 1 (12), pp. 614-617. [Accessed 9 September 2015].
    • Virdis, B., Rabaey, K., Yuan, Z. & Keller, J. (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. [online]. Water Research. 42 (12), pp. 3013-3024. [Accessed 3 September 2014].
    • Wafwoyo, W., Seo, C.W. & Marshall, W.E. (1999) Utilization of peanut shells as adsorbents for selected metals [online]. Journal of Chemical Technology & Biotechnology. 74 (11), pp. 1117-1121. [Accessed 17 September 2014].
    • Walter, X.A., Greenman, J. & Ieropoulos, I. (2013) Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells [online]. Algal Research. 2 (3), pp. 183-187. [Accessed 24 February 2014].
    • Wang, G., Huang, L. & Zhang, Y. (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. [online]. Biotechnology Letters. 30 (11), pp. 1959-1966. [Accessed 20 November 2014].
    • Wang, H. & Ren, Z.J. (2013) A comprehensive review of microbial electrochemical systems as a platform technology. [online]. Biotechnology advances. 31 (8), pp. 1796-1807. [Accessed 31 March 2014].
    • Wang, H., Wu, Z., Plaseied, A., Jenkins, P., Simpson, L., Engtrakul, C. & Ren, Z. (2011) Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells [online]. Journal of Power Sources. 196 (18), pp. 7465-7469. [Accessed 5 September 2014].
    • Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N. & Ren, N. (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). [online]. Biosensors & Bioelectronics. 25 (12), pp. 2639-2643. [Accessed 31 January 2014].
    • Wang, Z., Lim, B. & Choi, C. (2011) Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. [online]. Bioresource Technology. 102 (10), pp. 6304-6307. [Accessed 20 November 2014].
    • Watson, V.J., Nieto Delgado, C. & Logan, B.E. (2013) Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance. [online]. Environmental Science & Technology. 47 (12), pp. 6704-6710.
    • Weber, A.Z. & Newman, J. (2005) Effects of Microporous Layers in Polymer Electrolyte Fuel Cells [online]. Journal of The Electrochemical Society. 152 (4), pp. A677-A688. [Accessed 29 June 2015].
    • Wei, B., Tokash, J.C., Chen, G., Hickner, M.A. & Logan, B.E. (2012) Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells [online]. RSC Advances. 2 (33), pp. 12751-12758. [Accessed 9 September 2015].
    • Wilkinson, S. (2000) 'Gastrobots'-benefits and challenges of microbial fuel cells in foodpowered robot applications [online]. Autonomous Robots. 9pp. 99-111. [Accessed 8 September 2014].
    • Wilson, K., Yang, H., Seo, C.W. & Marshall, W.E. (2006) Select metal adsorption by activated carbon made from peanut shells. [online]. Bioresource Technology. 97 (18), pp. 2266-2270. [Accessed 31 January 2014].
    • Winfield, J., Greenman, J., Huson, D. & Ieropoulos, I. (2013a) Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. [online]. Bioprocess and biosystems engineering. 36 (12), pp. 1913-1921. [Accessed 1 July 2014].
    • Winfield, J., Ieropoulos, I., Greenman, J. & Dennis, J. (2011) The overshoot phenomenon as a function of internal resistance in microbial fuel cells. [online]. Bioelectrochemistry (Amsterdam, Netherlands). 81 (1), pp. 22-27. [Accessed 31 January 2014].
    • Winfield, J., Ieropoulos, I., Rossiter, J., Greenman, J. & Patton, D. (2013b) Biodegradation and proton exchange using natural rubber in microbial fuel cells. [online]. Biodegradation. 24 (6), pp. 733-739. [Accessed 21 January 2014].
    • Witek-Krowiak, A., Szafran, R.G. & Modelski, S. (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent [online]. Desalination. 265 (1-3), pp. 126-134. [Accessed 17 September 2014].
    • Wu, X., Song, T., Zhu, X., Wei, P. & Zhou, C.C. (2013) Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. [online]. Applied Biochemistry and Biotechnology. 171 (8), pp. 2082- 2092. [Accessed 4 February 2014].
    • Xiao, L., Young, E.B., Berges, J. a & He, Z. (2012) Integrated photobioelectrochemical system for contaminants removal and bioenergy production. [online]. Environmental Science & Technology. 46 (20), pp. 11459-11466.
    • Xu, J., Sheng, G.-P., Luo, H.-W., Li, W.-W., Wang, L.-F. & Yu, H.-Q. (2012) Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. [online]. Water Research. 46 (6), pp. 1817-1824. [Accessed 9 September 2015].
    • Xu, T. & Huang, C. (2008) Electrodialysis-based separation technologies: A critical review [online]. AIChE Journal. 54 (12), pp. 3147-3159. [Accessed 9 September 2015].
    • Yagishita, T., Horigome, T. & Tanaka, K. (2007) Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp [online]. Journal of Chemical Technology & Biotechnology. 56 (4), pp. 393-399. [Accessed 9 September 2015].
    • Yeager, E. (1984) Electrocatalysts for O2 reduction [online]. Electrochimica Acta. 29 (11), pp. 1527-1537. [Accessed 24 April 2015].
    • You, J., Greenman, J., Melhuish, C. & Ieropoulos, I. (2014) Small-scale microbial fuel cells utilising uric salts [online]. Sustainable Energy Technologies and Assessments. 6, pp. 60-63. [Accessed 9 September 2014].
    • You, S., Zhao, Q., Zhang, J., Jiang, J. & Zhao, S. (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor [online]. Journal of Power Sources. 162 (2), pp. 1409-1415. [Accessed 15 August 2014].
    • You, S.-J., Ren, N.-Q., Zhao, Q.-L., Kiely, P.D., Wang, J.-Y., Yang, F.-L., Fu, L. & Peng, L. (2009) Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. [online]. Biosensors & Bioelectronics. 24 (12), pp. 3698-3701. [Accessed 9 September 2014].
    • Yu, L., Chen, W., Qin, M. & Ren, G. (2009) Experimental research on water management in proton exchange membrane fuel cells [online]. Journal of Power Sources. 189 (2), pp. 882-887. [Accessed 16 June 2014].
    • Zamalloa, C., Vulsteke, E., Albrecht, J. & Verstraete, W. (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. [online]. Bioresource Technology. 102 (2), pp. 1149-1158. [Accessed 6 January 2015].
    • Zeman, F.S. & Lackner, K.S. (2004) Capturing carbon dioxide directly from the atmosphere. World Resource Review. 16 (2), pp. 157-172.
    • Zhang, F., Brastad, K.S. & He, Z. (2011) Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. [online]. Environmental Science & Technology. 45 (15), pp. 6690-6696.
    • Zhang, F., Chen, G., Hickner, M.A. & Logan, B.E. (2012a) Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes [online]. Journal of Power Sources. 218, pp. 100-105. [Accessed 19 May 2015].
    • Zhang, F., Jacobson, K.S., Torres, P. & He, Z. (2010) Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell [online]. Energy & Environmental Science. 3 (9), pp. 1347. [Accessed 11 October 2014].
    • Zhang, F., Pant, D. & Logan, B.E. (2011) Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. [online]. Biosensors & Bioelectronics. 30 (1), pp. 49-55. [Accessed 31 October 2014].
    • Zhang, F., Tian, L. & He, Z. (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes [online]. Journal of Power Sources. 196 (22), pp. 9568-9573. [Accessed 18 September 2014].
    • Zhang, L., Liu, C., Zhuang, L., Li, W., Zhou, S. & Zhang, J. (2009b) Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. [online]. Biosensors & Bioelectronics. 24 (9), pp. 2825-2829. [Accessed 4 September 2014].
    • Zhang, X., Xia, X., Ivanov, I., Huang, X. & Logan, B.E. (2014) Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. [online]. Environmental Science & Technology. 48 (3), pp. 2075-2081.
    • Zhang, X., Zhu, F., Chen, L., Zhao, Q. & Tao, G. (2013) Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell. [online]. Bioresource Technology. 146pp. 161-168. [Accessed 17 July 2015].
    • Zhang, Y., Merrill, M.D. & Logan, B.E. (2010) The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells [online]. International Journal of Hydrogen Energy. 35 (21), pp. 12020-12028. [Accessed 21 August 2014].
    • Zhang, Y., Sun, J., Hu, Y., Li, S. & Xu, Q. (2012b) Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials [online]. International Journal of Hydrogen Energy. 37 (22), pp. 16935-16942. [Accessed 7 October 2014].
    • Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P. & Herrmann, I. (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells [online]. Electrochemistry Communications. 7 (12), pp. 1405-1410. [Accessed 12 August 2014].
    • Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P. & Herrmann, I. (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. [online]. Environmental Science & Technology. 40 (17), pp. 5193-5199.
    • Zhao, F., Rahunen, N., Varcoe, J.R., Chandra, A., Avignone-Rossa, C., Thumser, A.E. & Slade, R.C.T. (2008) Activated Carbon Cloth as Anode for Sulfate Removal in a Microbial Fuel Cell [online]. Environmental Science & Technology. 42 (13), pp. 4971-4976.
    • Zhu, X., Hatzell, M.C., Cusick, R.D. & Logan, B.E. (2013) Microbial reverseelectrodialysis chemical-production cell for acid and alkali production [online]. Electrochemistry Communications. 31, pp. 52-55. [Accessed 9 September 2015].
    • Zhuang, L., Zhou, S., Wang, Y., Liu, C. & Geng, S. (2009) Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. [online]. Biosensors & Bioelectronics. 24 (12), pp. 3652-3656. [Accessed 30 June 2014].
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article