Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jenner, Matthew; Afonso, José P.; Kohlhaas, Christoph; Karbaum, Petra; Frank, Sarah; Piel, Jörn; Oldham, Neil J. (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: lipids (amino acids, peptides, and proteins), stomatognathic system, animal structures, humanities, bacteria
Acyl hydrolase (AH) domains are a common feature of trans-AT PKSs. They have been hypothesised to perform a proofreading function by removing acyl chains from stalled sites. This study determines the substrate tolerance of the AH PedC for a range of acyl-ACPs. Clear preference towards short, linear acyl-ACPs is shown, with acetyl-ACP the best substrate. These results imply a more targeted housekeeping role for PedC: namely the removal of unwanted acetyl groups from ACP domains caused by erroneous transfer of acetyl-CoA, or possibly by decarboxylation of malonyl-ACP.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. G. M. Cragg and D. J. Newman, Pure and Appl. Chem., 2005, 77, 7-24.
    • 2. C. T. Walsh, Science. 2004, 303, 1805-1810.
    • 3. R. V. O'Brien, R. W. Davis, C. Khosla and M. E. Hillenmeyer, J. Antibiot., 2014, 67, 89-97.
    • 4. G. M. Cragg and D. J. Newman, J. Nat. Prod. 2007, 70, 461- 477.
    • 5. J. Piel, Nat Prod Rep. 2010, 27, 996-1047.
    • 6. M. Till and P. R. Race, Biotechnol. Lett., 2014, 36, 877-888.
    • 7. Y. Q. Cheng, G. L. Tang and B. Shen, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3149-3154.
    • 8. K. Jensen, H. Niederkrüeger, K. Zimmermann, A. L. Vagstad, J. Moldenhauer, N. Brendel, S. Frank, P. Pöplau, C. Kohlhaas, C. A. Townsend, M. Oldiges, C. Hertweck and J. Piel, Chem. Biol., 2012, 19, 329-339.
    • 9. J. C. Kwan, E. W. Schmidt, Chem. Biol. 2012, 19, 309-311.
    • 10. J. Piel, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 14002-14007.
    • 11. K. M. Fisch, C. Gurgui, N. Heycke, S. A. van der Sar, S. A. Anderson, V. L. Webb, S. Taudien, M. Platzer, B. K. Rubio, S. J. Robinson, P. Crews and J. Piel, Nat. Chem. Bio., 2009, 5, 494-501.
    • 12. B. Kusebauch, N. Brendel, H. Kirchner, H-M. Dahse and C. Hertweck, Chembiochem. 2011, 12, 2284-2288.
    • 13. O. Perlova, K. Gerth, O. Kaiser, A. Hans and R. Müller, J. Biotechnol., 2006, 121, 174-191.
    • 14. Xie X, Meehan MJ, Xu W, Dorrestein PC, Tang Y., J Am. Chem. Soc., 2009, 131, 8388-8389.
    • 14. E. Yeh, R. M Kohli, S. D. Bruner and C.T. Walsh, Chembiochem., 2004, 5, 1290-1293.
    • 15. D. Schwarzer, H. D. Mootz, U. Linne and M. A. Marahiel, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 14083-14088.
    • 16. M. L. Heathcole, J. Staunton and P. F. Leadlay, Chem. Biol. 2001, 8, 207-220.
    • 17. A. K. Joshi, L. Zhang, V. S. Rangan, and S. Smith, J. Biol. Chem. 2003, 278, 33142-33149.
    • 18. C. T. Walsh, A. M. Gehring, P. H. Weinreb, L. E. N. Quadri and R. S. Flugel, Curr. Opin. Chem. Biol., 1997, 1, 309-315.
    • 19. J. Beld, E. C. Sonnenschein, C. R. Vickery, J. P. Noel and M. D. Burkart, Nat. Prod. Rep., 2014, 31, 61-108.
    • 20. S. Chohnan, H. Furukawa, T. Fujio, H. Nishihara and Y. Takamura, Appl. Environ. Microbiol., 1997, 3, 553-560.
    • 21. A. L. Koch and H. R. Levy, J. Biol. Chem., 1955, 217, 947-957.
    • 22. J. Mandelstam, Biochem. J., 1958, 69, 110-119.
    • 23. P. R. Vagelos and A. R. Larrabes, J. Biol. Chem., 1967, 242, 1776-1781.
    • 24. E. Murugan, R. Kong, H. Sun, F. Rao and Z-X. Liang, Protein Expr. Purif., 2010, 71, 132-138.
    • 25. N. M. Kosa, K. M. Pham and M. D. Burkart, Chem. Sci., 2014, 5, 1179-1186.
    • 26. M. Nielsen, C. Lundegaard, O. Lund and T. N. Petersen, Nucleic Acids Res., 2010, 38, W576-W581.
    • 27. C. Oefner, H. Schulz, A. D'Arcy, and G. E. Dale, Acta Crystallogr. Sect. D-Biol. Crystallogr., 2006, 62, 613-618.
    • 28. Y. Y. Tang, C. Y. Kim, I. I. Mathews, D. E. Cane and C. Khosla, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11124-11129.
    • 29. F. T. Wong, X. Jin, I. I. Mathews, D. E. Cane, and C. Khosla, Biochemistry., 2011, 50, 6539-6548.
    • 30. A. T. Keatinge-Clay, A. A. Shelat, D. F. Savage, S. C. Tsai, L. J. Miercke, J. D. O'Connell, C. Khosla, R. M. Stroud, Structure, 2003, 11, 147-154.
    • 31. V. S. Rangan and S. Smith, J. Biol. Chem., 1997, 272, 11975- 11978.
    • 32. Y. Jiang, K. L. Morley, J. D. Schrag and R. J. Kazlauskas, Chembiochem. 2011, 12, 768-776.
    • 33. J. Moldenhauer, X. H. Chen, R. Borriss, J. Piel, Angew. Chem. Int. Ed., 2007, 46, 8195-8197.
    • 34. J. Moldenhauer, D. C. G. Goetz, C. R. Albert, S. K. Bischof, K. Schneider, R. D. Süssmuth, M. Engeser, H. Gross, G. Bringmann and J. Piel, Angew. Chem. Int. Ed., 2010, 49, 1465-1467.
    • 35. B. Kusebauch, B. Busch, K. Scherlach, M. Roth and C. Hertweck, Angew. Chem. Int. Ed., 2009, 48, 5001-5004.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article