LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Douglas, R. H.; Jeffery, G. (2014)
Publisher: The Royal Society
Journal: Proceedings of the Royal Society B: Biological Sciences
Languages: English
Types: Article
Subjects: lens, 133, vision, ultraviolet sensitivity, RE, transmission, mammal, retina, 1001, Research Articles

Classified by OpenAIRE into

mesheuropmc: genetic structures, sense organs, eye diseases
Although ultraviolet (UV) sensitivity is widespread among animals it is considered rare in mammals, being restricted to the few species that have a visual pigment maximally sensitive (λ max) below 400 nm. However, even animals without such a pigment will be UV-sensitive if they have ocular media that transmit these wavelengths, as all visual pigments absorb significant amounts of UV if the energy level is sufficient. Although it is known that lenses of diurnal sciurid rodents, tree shrews and primates prevent UV from reaching the retina, the degree of UV transmission by ocular media of most other mammals without a visual pigment with λ max in the UV is unknown. We examined lenses of 38 mammalian species from 25 families in nine orders and observed large diversity in the degree of short-wavelength transmission. All species whose lenses removed short wavelengths had retinae specialized for high spatial resolution and relatively high cone numbers, suggesting that UV removal is primarily linked to increased acuity. Other mammals, however, such as hedgehogs, dogs, cats, ferrets and okapis had lenses transmitting significant amounts of UVA (315–400 nm), suggesting that they will be UV-sensitive even without a specific UV visual pigment.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bowmaker JK, Dartnall HJA. 1980 Visual pigments
    • Lond. 298, 501 - 511.
    • Katzgraber F, Daxecker F, Daxer A. 1994 Spectral
    • Doc. Ophthalmol. 88, 165 - 173. (doi:10.1007/
    • BF01204614)
    • 1999 The optical properties of the anterior
    • cataract. Exp. Eye Res. 68, 785 - 795. (doi:10.
    • 1006/exer.1999.0687)
    • Lei B, Yao G. 2006 Spectral attenuation of the
    • wavelengths 360 nm to 1020 nm. Exp. Eye Res. 83,
    • 610 - 614. (doi:10.1016/j.exer.2006.02.013)
    • Larsen M. 2010 Age-related changes in the
    • Surg. 36, 308 - 312. (doi:10.1016/j.jcrs.2009.08.035)
    • Stark WS, Tan KEWP. 1982 Ultraviolet light:
    • system. Photochem. Photobiol. 36, 371 - 380.
    • (doi:10.1111/j.1751-1097.1982.tb04389.x)
    • Briscoe AD, Chittka L. 2001 The evolution of colour
    • vision in insects. Annu. Rev. Entomol. 46, 471 - 510.
    • (doi:10.1146/annurev.ento.46.1.471)
    • 8. Pye D. 2011 To add another hue unto the rainbow: near ultraviolet in nature. Opt. Laser Technol. 43, 310 - 316. (doi:10.1016/j.optlastec.2009.01.007)
    • 9. Jacobs GH. 1992 Ultraviolet vision in vertebrates. Ann. Zool. 32, 544 - 554.
    • 10. Bowmaker JK. 2008 Evolution of vertebrate visual pigments. Vis. Res. 48, 2022 - 2041. (doi:10.1016/j. visres.2008.03.025)
    • 11. Jacobs GH, Neitz J, Deegan JF. 1991 Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655 - 656. (doi:10. 1038/353655a0)
    • 12. Jacobs GH, Calderone JB, Fenwick JA, Krogh K, Williams GA. 2003 Visual adaptations in a diurnal rodent, Octodon degus. J. Comp. Physiol. A 189, 347 - 361. (doi:10.1007/s00359-003- 0408-0)
    • 13. Jacobs GH, Deegan JF. 1994 Sensitivity to ultraviolet light in the Gerbil (Meriones unguiculatus). Vis. Res. 34, 1433 - 1441. (doi:10.1016/0042-6989(94) 90144-9)
    • 14. Calderone JB, Jacobs GH. 1999 Cone receptor variations and their functional consequences in two species of hamster. Vis. Neurosci. 16, 53 - 63. (doi:10.1017/S0952523899161029)
    • 15. Cha´vez AE, Bozinovic F, Peichl L, Palacios AG. 2003 Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus Octodon (Rodentia): implications for visual ecology. Invest. Ophthalmol. Vis. Sci. 44, 2290 - 2296. (doi:10.1167/iovs.02-0670)
    • 16. Peichl L, Cha´vez AE, Ocampo A, Mena W, Bozinovic F, Palacios AG. 2005 Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae). J. Comp. Neurol. 486, 197 - 208. (doi:10.1002/cne.20491)
    • 17. Gaillard F, Kuny S, Sauve´ Y. 2009 Topographic arrangement of S-cone photoreceptors in the retina of the diurnal Nile grass rat (Arvicanthis niloticus). Invest. Ophthalmol. Vis. Sci. 50, 5426 - 5434. (doi:10.1167/iovs.09-3896)
    • 18. Schleich CE, Vielma A, Glo¨smann M, Palacios AG, Peichel L. 2010 Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Cetenomys): Morphology, topography and spectral sensitivity. J. Comp. Neurol. 518, 4001 - 4015. (doi:10.1002/cne.22440)
    • 19. Glo¨smann M, Steiner M, Peichl L, Ahnelt PK. 2008 Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. J. Vis. 8, 1 - 12. (doi:10.1167/8.4.23)
    • 20. Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J. 2002 Trichromacy in Australian marsupials. Curr. Biol. 12, 657 - 680. (doi:10.1016/S0960- 9822(02)00772-8)
    • 21. Arrese CA, Oddy AY, Runham PB, Hart NS, Shand J, Hunt DM, Beazley LD. 2005 Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Proc. R. Soc. B 272, 791 - 796. (doi:10.1098/rspb.2004.3009)
    • 22. Hunt DM, Chan J, Carvalho LS, Hokoc JN, Ferguson MC, Arrese CA, Beazley LD. 2009 Cone visual pigments in two species of South American marsupials. Gene 433, 50 - 55. (doi:10.1016/j.gene. 2008.12.006)
    • 23. Palacios AG, Bozinovic F, Vielma A, Arrese CA, Hunt DM, Peichl L. 2010 Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839). J. Comp. Neurol. 518, 1589 - 1602. (doi:10.1002/ cne.22292)
    • 24. Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, Tsao H, Li WH. 2004 Molecular evolution of bat color vision genes. Mol. Biol. Evol. 21, 295 - 302. (doi:10.1093/molbev/msh015)
    • 25. Mu¨ller B, Glo¨smann M, Peichl L, Knop GC, Hagemann C, Ammermu¨ller J. 2009 Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS ONE 4, e6390. (doi:10.1371/journal.pone.0006390)
    • 26. Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S. 2009 The evolution of colour vision in nocturnal mammals. Proc. Natl Acad. Sci. USA 106, 8980 - 8985. (doi:10.1073/pnas.0813201106)
    • 27. Xuan FJ, Hu KL, Zhu TT, Paul R, Wang XZ, Sun Y. 2012 Behavioural evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologia 29, 109 - 114. (doi:10.1590/S1984-4670201200 0200002)
    • 28. Calderone JB, Jacobs GH. 2003 Spectral properties and retinal distribution of ferret cones. Vis. Neurosci. 20, 11 - 17. (doi:10.1017/S0952523803201024)
    • 29. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K. 2000 In search of the visual pigment template. Vis. Neurosci. 17, 509 - 528. (doi:10.1017/ S0952523800174036)
    • 30. Hart N, Partridge JC, Bennett ATD, Cuthill IC. 2000 Visual pigments, cone oil droplets and ocular media in four species of estridid finch. J. Comp. Physiol. A 186, 681 - 694. (doi:10.1007/s003590000121)
    • 31. Anderson RM. 1983 Visual perceptions and observations of an aphakic surgeon. Percept. Mot. Skills 57, 1211 - 1218. (doi:10.2466/pms.1983. 57.3f.1211)
    • 32. Griswold MS, Stark WS. 1992 Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet. Vis. Res. 32, 1739 - 1743. (doi:10.1016/0042-6989(92)90166-G)
    • 33. Stark WS, Wagner RH, Gillespie CM. 1994 Ultraviolet sensitivity of three cone types in the aphakic observer determined by chromatic adaptation. Vis. Res. 34, 1457 - 1459. (doi:10.1016/0042- 6989(94)90147-3)
    • 34. Hogg C, Neveu M, Stokkan K-A, Folkow L, Cottril P, Douglas RH, Hunt DM, Jeffery G. 2011 Arctic reindeer extend their visual range into the ultraviolet. J. Exp. Biol. 214, 2014 - 2019. (doi:10.1242/jeb.053553)
    • 35. Williams GA, Jacobs GH. 2008 Absence of functional short-wavelength sensitive cone pigments in hamsters (Mesocricetus). J. Comp. Physiol. A 194, 429 - 439. (doi:10.1007/s00359-008-0316-4)
    • 36. Brainard GC, Barker FM. 1987 Regulation of the pineal-reproductive axis by near ultraviolet radiation (UV-A) in three rodent species. In Fundamentals and clinics in pineal research (eds GP Trentini, C DeGaetan, P Pe´vet), vol. 44, pp. 207 - 210. New York, NY: Serono Symposia Publications, Raven press.
    • 37. Brainard GC, Barker FM, Hoffman RJ, Stetson MH, Hanifin JP, Podolin PL, Rollag MD. 1994 Ultraviolet regulation of neuroendocrine and circadian physiology in rodents. Vis. Res. 34, 1521 - 1533. (doi:10.1016/0042-6989(94)90154-6)
    • 38. Zhang Y, Brainard GC, Zeea PC, Pintoa LH, Takahashia JS, Tureka FW. 1998 Effects of aging on lens transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters. Neurosci. Lett. 258, 167 - 170. (doi:10.1016/S0304- 3940(98)00887-8)
    • 39. Hut RA, Scheper A, Daan S. 2000 Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light? J. Comp. Physiol. A 186, 707 - 715. (doi:10.1007/s003590000124)
    • 40. Von Schantz M, Argamaso-Hernan S, Sze´l A, Foster RG. 1997 Photopigments and photoentrainment in the Syrian golden hamster. Brain Res. 770, 131 - 138. (doi:10.1016/S0006-8993(97)00791-9)
    • 41. Winter Y, Lo´pez J, von Helversen O. 2003 Ultraviolet vision in bats. Nature 425, 612 - 614. (doi:10.1038/ nature01971)
    • 42. Douglas RH, Marshall NJ. 1999 A review of vertebrate and invertebrate ocular filters. In Adaptive mechanisms in the ecology of vision (eds SN Archer, MBA Djamgoz, ER Loew, JC Partridge, S Vallerga), pp. 95 - 162. Dordrecht, The Netherlands: Kluwer Academic Publishers.
    • 43. Douglas RH, McGuigan CM. 1989 The spectral transmission of freshwater teleost ocular media: an interspecific comparison and a guide to potential ultraviolet sensitivity. Vis. Res. 29, 871 - 879. (doi:10.1016/0042-6989(89)90098-9)
    • 44. Siebeck UE, Marshall NJ. 2000 Transmission of ocular media in labrid fishes. Phil. Trans. R. Soc. Lond. B 355, 1257 - 1261. (doi:10.1098/rstb. 2000.0679)
    • 45. Kondrashev SL, Gaburtzeva AG, Gnjubkina VP, Orlov OJ, My PT. 1982 Coloration of corneas in fish: a list of species. Vis. Res. 26, 287 - 290. (doi:10.1016/ 0042-6989(86)90025-8)
    • 46. Cooper GF, Robson JG. 1969 The yellow colour of the lens of man and other primates. J. Physiol. Lond. 203, 411 - 417.
    • 47. Gaillard ER, Meriam J, Zheng L, Dillon J. 2011 Transmission of light of the young primate retina: possible implications for the formation of lipofuscin. Photochem. Photobiol. 87, 18 - 21. (doi:10.1111/j. 1751-1097.2010.00837.x)
    • 48. Van Norren D. 1972 Macaque lens absorption in vivo. Invest. Ophthalmol. 11, 177 - 181.
    • 49. Tove´e MJ, Bowmaker JK, Mollon JD. 1992 The relationship between cone pigments and behavioural sensitivity in a new world monkey (Callithrix jacchus jacchus). Vis. Res. 32, 867 - 878. (doi:10.1016/0042-6989(92)90029-I)
    • 50. Tigges J, Brooks BA, Klee MR. 1967 ERG recordings of a primate pure cone retina (Tupaia glis). Vis. Res. 7, 553 - 563. (doi:10.1016/0042-6989(67) 90064-8)
    • 51. Petry HM, Ha´rosi FI. 1990 Visual pigments of the tree shrew (Tupaia belangeri) and greater Galago (Galago crassicaudatus): a microspectrophotometric investigation. Vis. Res. 30, 839 - 851. (doi:10.1016/ 0042-6989(90)90053-N)
    • 52. Walls GL. 1931 The occurrence of coloured lenses in the eyes of snakes and squirrels, and their probable significance. Copeia 1931, 125 - 127. (doi:10.2307/ 1437335)
    • 53. Arden GB, Tansley K. 1955 The spectral sensitivity of the pure cone retina of the souslik (Citellus citellus). J. Physiol. Lond. 130, 225 - 232.
    • 54. Cooper GF, Robson JG. 1969 The yellow colour of the lens of the grey squirrel (Sciurus carolinesis leucotis). J. Physiol. Lond. 203, 403 - 410.
    • 55. Jacobs GH, Yolton RL. 1972 Some characteristics of the eye and the electroretinogram of the Prairie dog. Exp. Neurol. 37, 538 - 549. (doi:10.1016/ 0014-4886(72)90097-0)
    • 56. Yolton RL, Yolton DP, Renz J, Jacobs GH. 1974 Preretinal absorbance in sciurid eyes. J. Mammal. 55, 14 - 20. (doi:10.2307/1379253)
    • 57. Chou BR, Cullen AP. 1984 Spectral transmittance of the ocular media of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Can. J. Zool. 62, 825 - 830. (doi:10.1139/z84-120)
    • 58. Zigman S, Paxhia T, Waldron W. 1985 Biochemical features of the grey squirrel lens. Invest. Ophthalmol. Vis. Sci. 26, 1075 - 1082.
    • 59. Govardovskii VI, Ro¨hlich P, Sze´l A, Khokalova TV. 1992 Cones in the retina of the Mongolian Gerbil, Meriones unguiculatus: an immunocytochemical and electrophysiological study. Vis. Res. 31, 19 - 27. (doi:10.1016/0042-6989(92)90108-U)
    • 60. Gorgels TGMF, van Norren D. 1992 Spectral transmittance of the rat lens. Vis. Res. 32, 1509 - 1512. (doi:10.1016/0042-6989(92)90206-X)
    • 61. Brainard GC, Hanifini JP, Barker FM, Sanford B, Stetson MH. 2001 Influence of near-ultraviolet radiation on reproductive and immunological developments in juvenile male Siberian Hamsters. J. Exp. Biol. 204, 2535 - 2541.
    • 62. Williams GA, Calderone JB, Jacobs GH. 2005 Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae). J. Comp. Physiol. A 191, 125 - 134. (doi:10. 1007/s00359-004-0578-4)
    • 63. Jacobs GH, Williams GA. 2007 Contributions of the mouse UV photopigment to the ERG and to vision. Doc. Ophthalmol. 115, 137 - 144. (doi:10.1007/ s10633-007-9055-z)
    • 64. Henriksson JT, Bergmanson JPG, Walsh JE. 2010 Ultraviolet radiation transmittance of the mouse eye and its individual components. Exp. Eye Res. 90, 382 - 387. (doi:10.1016/j.exer.2009.11.004)
    • 65. Kinsey VE. 1948 Spectral transmission of the eye to ultraviolet radiations. Arch. Ophthalmol. 39, 508 - 513. (doi:10.1001/archopht.1948.00900 020516005)
    • 66. Wiesinger H, Schmidt FH, Williams RC, Tiller CO, Ruffin RS, Guerry D, Ham WT. 1956 The transmission of light through the ocular media of the rabbit eye. Am. J. Ophthalmol. 42, 907 - 910.
    • 67. Trokel S. 1962 The physical basis for transparency of the crystalline lens. Invest. Ophthalmol. 1, 493 - 501.
    • 68. Algvere PV, Torstensson PL, Tengroth BM. 1993 Light transmittance of ocular media in living rabbit eyes. Invest. Ophthalmol. Vis. Sci. 34, 349 - 354.
    • 69. Pirie A. 1959 Crystals of riboflavin making up the tapetum lucidum in the eye of a lemur. Nature 183, 985 - 986. (doi:10.1038/183985a0)
    • 70. Hunt S, Cuthill IC, Bennett ATD, Church SC, Partridge JC. 2001 Is the ultraviolet waveband a special communication channel in avian mate choice? J. Exp. Biol. 204, 2499 - 2507.
    • 71. Maddock SA, Church SC, Cuthill IC. 2001 The effects of the light environment on prey choice by zebra finches. J. Exp. Biol. 204, 2509 - 2515.
    • 72. Goldsmith TH. 1990 Optimization, constraint, and history in the evolution of eyes. Q. Rev. Biol. 65, 281 - 322. (doi:10.1086/416840)
    • 73. Hunt DM, Carvalho LS, Cowing JA, Parry WL, Wilkie SE, Davies WL, Bowmaker JK. 2007 Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochem. Photobiol. 83, 303 - 310. (doi:10.1562/2006-06-27-IR-952)
    • 74. Van Norren D, Gorgels TGMF. 2011 The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data. Photochem. Photobiol. 87, 747 - 753. (doi:10.1111/j. 1751-1097.2011.00921.x)
    • 75. Collier R, Zigman S. 1987 The grey squirrel lens protects the retina from near-UV radiation damage. Prog. Clin. Biol. Res. 247, 571 - 585.
    • 76. Carvalho LS, Knott B, Berg ML, Bennett ATD, Hunt DM. 2011 Ultraviolet-sensitive vision in long-lived birds. Proc. R. Soc. B 278, 107 - 114. (doi:10.1098/ rspb.2010.1100)
    • 77. Lind O, Mitkus M, Olsson P, Kelber A. 2014 Ultraviolet vision in birds: the importance of transparent eye media. Proc. R. Soc. B 281, 20132209. (doi:10.1098/rspb.2013.2209)
    • 78. Bron AJ, Vrensen GFJM, Koretz J, Mariani G, Harding JJ. 2000 The ageing lens. Ophthalmologica 214, 86 - 104. (doi:10.1159/000027475)
    • 79. Douglas RH. 1987 Ocular lens diameter as an indicator of age in the brown trout, Salmo trutta. J. Fish Biol. 31, 835 - 836. (doi:10.1111/j.1095- 8649.1987.tb05282.x)
    • 80. Van Heyningen R. 1976 Experimental studies on cataract. Invest. Ophthalmol. Vis. Sci. 15, 685 - 697.
    • 81. Douglas RH. 1989 The spectral transmission of the lens and cornea of the brown trout (Salmo trutta) and goldfish (Carassius auratus): effect of age and implications for ultraviolet vision. Vis. Res. 29, 861 - 869. (doi:10.1016/0042- 6989(89)90097-7)
    • 82. Thorpe A, Douglas RH. 1993 Spectral transmission and short-wave absorbing pigments in the fish lens - II. Effects of age. Vis. Res. 33, 301 - 307. (doi:10.1016/0042-6989(93)90086-C)
    • 83. Weale RA. 1988 Age and the transmittance of the human crystalline lens. J. Physiol. Lond. 395, 577 - 587.
    • 84. Gaillard ER, Zheng L, Merriamand JC, Dillon J. 2000 Age-related changes in the absorption characteristics of the primate lens. Invest. Ophthalmol. Vis. Sci. 41, 1454 - 1459.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article