Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Puri, Sanyogitta (2007)
Languages: English
Types: Unknown
The chemistry and structure of Poly (glycerol adipate) facilitate its substitution with various pendant functional groups leading to modifications of the physicochemical properties of the polymer. Modified backbones then can be selected based upon the properties of the compound to be incorporated. Thus, this could be explored as a drug delivery system without many of the limitations of commercially available polymers. The aim of this study was investigate whether various polymers and drugs interact in a specific manner and whether the nature of these interactions influence the physicochemical characteristics of the particles and their drug loading and release profile. By investigating drugs belonging to various classes and with different properties it has been possible to correlate properties associated with drugs and pendant functional groups of the polymer which are ultimately responsible for the drug loading and release characteristics. For some drug polymer formulations, good loading and controlled release rates have been achieved. Compared to various conventional polymer systems reported for nanoparticle formulations, poly (glycerol adipate) polymers have also demonstrated the ability to control rate of release of highly water soluble drugs, even from the most hydrophilic polymer backbone in its unsubstituted form. From the various drug loading and release profiles it has been demonstrated that, unlike reported literature, particle size is not the primary factor influencing drug release over the relatively small range of particle sizes seen in this study. Neither is the water solubility of either the drug or the polymer alone responsible for the rapid and uncontrolled release profile from nanoparticles. Thus, Drug polymer interactions are more likely to influence drug loading and release and unlike common reports in the literature, hydrophilicity, molecular weight or concentration of polymer / drug are less likely to affect these parameters in isolation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Kwon, H., Y., Lee, J., Y., Choi, S., W., Jang, Y., Kim, J., H., Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloids Surf., 2001. 182: p. 123-130.
    • Heiss, J., D., Papavassiliou, E., Merrill, M., J., Nieman, L., Knightly, J., J., Walbridge, S., Edwards, N., A., Oldfield, E., H., Mechanism of dexamethasone suppression of brain tumour-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J. Clin. Invest., 1996. 98(6): p. 1400-08.
    • Ishihara, T., Mizushima, Y., Intravenous nanoparticles for targeting drug delivery and sustained drug release, U.S. Patent, 20060233883. (2006) USA.
    • Ramstedt, B., Slotte, J., P., Interaction of Cholesterol with Sphingomyelins and Acyl-Chain-Matched Phosphatidylcholines: A Comparative Study of the Effect of the Chain Length. Biophysics. J., 1999. 76: p. 908-915.
    • Liu, F., Liao, S., Study of the effect of etoposide on the fluidity of dipalmitoylphosphatidylcholine liposome by differential scanning calorimetry and Raman spectroscopy. Acta Pharmaceutica Sinica, 1989.
    • 24(5): p. 372-75.
    • Qiu, Z., B., Ikehara, T., Nishi, T., Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide) Polymer, 2003. 44: p. 2799.
    • Gomez-Gaete, C., Tsapis, N., Besnard, M., Bochot, A., Fattal, E., Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int. J. Pharm., 2007. 331(2): p. 153-9.
    • Controlled Release, 1999. 60: p. 77-100.
    • Matsumoto, J., Nakada, Y., Sakurai, K., Preparation of nanoparticles consisted of poly(l-lactide)-poly(ethylene glycol)- poly(L- lactide) and their evaluation in vitro. Int. J. Pharm., 1999. 185(1): p. 93-101.
    • Juan, W., Wang, B., M., Schwendeman, S., P., Characterisation of the initial burst release of a model peptide from poly(D,L-lactide-coglycolide) microspheres. J. Controlled Release, 2002. 82: p. 289-307.
    • Pharm. Sci., 1963. 52: p. 1145-49.
    • Eur. J. Pharm. Sci., 2001. 13(2): p. 123-133.
    • Piskin, E., Kaitian, X., Novel PDLLA/PEG copolymer micelles as drug carriers. J. Biomater. Sci., Polym., 1995. 7(4): p. 359-73.
    • Pharm., 2000. 200: p. 231-242.
    • Lin, W., Juang, L., Lin, C., Stability and Release Performance of a Series of Pegylated Copolymeric Micelles. Pharm. Res., 2003. 20(4): p. 668-73.
    • Musumeci, T., Ventura, C., A., Giannone, I., Ruozi, B., Montenegro, L., Pignatello, R., Puglisi, G., PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm., 2006. 325(1-2): p. 172-9.
    • Yoo, H., S., Lee, J., E., Chung, H., Kwon, I., C., Jeong, S., Y., Selfassembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J. Controlled Release, 2005. 103(1): p. 235- 43.
    • Int. J. Pharm., 2000. 199: p. 95-110.
    • Stolnik, S., S., Garnett, M., C., Davies, M., C., Illum, L., Bousta, M., Davis, S., S., The colloidal properties of surfactant-free biodegradable nanospheres from poly (β-malic acid-co-benzyl malate)s and poly(lactic acid-co-glycolide). Colloids Surf., 1995. 97: p. 235-245.
    • Zhang, Z., Grijpma, D., W., Feijen, J., Poly(trimethylene carbonate) and monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) nanoparticles for the controlled release of dexamethasone. J. Controlled Release, 2006. 111(3): p. 263-70.
    • Int. J. Pharm., 1999. 185: p. 255-266.
    • Panyam, J., Labhasetwar, V., Solid-State Solubility Influences Encapsulation and Release of Hydrophobic Drugs from PLGA/PLA Nanoparticles. J. Pharm. Sci., 2005. 93 (7): p. 1804-14.
    • Biomaterials, 2006. 27(15): p. 3031-37.
    • Horisawa, E., Hirota, T., Kawazoe, S., Yamada, J., Yamamoto, H., Takeuchi, H., Prolonged anti-inflammatory action of DLlactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigeninduced arthritic rabbit. Pharm. Res., 2002. 19: p. 403-10.
    • Ishihara, T., Izumo, N., Higaki, M., Hagi, T., Role of zinc in formulation of PLGA/PLA nanoparticles encapsulating betamethasone phosphate and its release profile. J. Controlled Release, 2005. 105: p. 1-2.
    • Bajpai, A., K., Choubey, J., In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. J. Appl. Polym. Sci., 2006.
    • 101(4): p. 2320-32.
    • Microencapsulation, 1995. 12(1): p. 37-47.
    • Stamp, D., Julliano, R., Factors affecting encapsulation of drugs within liposomes. Can. J. Physiol. Pharmacol., 1979. 57(5): p. 535-9.
    • Gomez, C., Blanco, M., D., Bernardo, M., V., Olmo, R., Muniz, E., Teijon, J., M., Cytarabine release from comatrices of albumin microspheres in a poly(lactide-co-glycolide) film: in vitro and in vivo studies. Eur. J. Pharm. Biopharm., 2004. 57(2): p. 225-33.
    • Prabha, S., Labhasetwar, V., Crtical Determinants in PLGA/PLA Nano mediated gene expression. Pharm. Res., 2004. 21(2): p. 354.
    • Liu, W., H., Song, J., L., Liu, K., Chu, D., F., Li, Y., X., Preparation and in vitro and in vivo release studies of Huperzine A loaded microspheres for the treatment of Alzheimer's disease. J. Controlled Release, 2005.
    • 107: p. 417-27.
    • Int. J. Pharm., 2004. 270: p. 251-64.
    • Alonso, M., J., Nanoparticulate Drug Carrier Technology, in Pharmaceutical Dosage Forms: Disperse Systems H. Lieberman, A., Rieger, M., M., Banker, G., S., Editor. 1996, Marcel Dekker: New York.
    • p. 203-242.
    • Blanco, M., D., Gomez, C., Olmo, R., Chitosan microspheres in PLG films as devices for cytarabine release. Int. J. Pharm., 2000. 202: p. 29- 39.
    • Bilati, U., Allemann, E., Doelker, E., Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci., 2005. 24(1): p. 67-75.
    • McCarron, P., A., Woolfson, A., D., Sustained release of 5-Flurouracil from nanoparticles. J. Pharm. Pharmacol., 2000. 52: p. 1451-1459.
    • Soo, L., Lovric, J., Davidson, P., Maysinger, D., Eisenberg, A., Polycaprolactone-block-poly(ethylene oxide) Micelles: A Nanodelivery System for 17β-Estradiol. Mol. Pharm., 2005. 2(6): p. 519 - 527.
    • Pharm., 1999. 188: p. 49-58.
    • Nah, J., W., Jeong, Y., I., Cho, C., S., Kim, S., I., Drug-delivery system based on core-shell-type nanoparticles composed of poly (g-benzyl Lglutamate) and poly(ethylene oxide) J. Appl. Polym. Sci., 2000. 75: p.
    • Gorshkova, M., Y., Stotskaya, L., L., Micelle-like macromolecular systems for controlled release of daunomycin. Polym. Adv. Technol., 1998. 9: p. 362-67.
    • Akinobu, H., Kawaguchi, T., Clinical Pharmacokinetics of Cytarabine formulations. Drug Disposition, 2002. 41(10): p. 705-18.
    • Controlled Release, 1998. 56(1-3): p. 1-6.
    • Feng, J., Zeng, Y., Ma, C., Cai, X., Zhang, Q., Tong, M., Yu, B., Xu, P., The surfactant tween 80 enhances biodesulfurization. Appl. Environ.
    • Microbiol., 2006. 72(11): p. 7390-3.
    • Peng, T., Cheng, S., Zhuo, R., Synthesis and characterization of poly-,- [N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers J. Biomed. Mater. Res., Part A 2006. 76(1): p. 163 - 173.
    • Mainaredes, R., M., Evangelista, R., C., Praziquantel-loaded PLGA nanoparticles: preparation and characterization. J. Microencapsulation, 2005. 22(1): p. 13-24.
    • Bharali, D., J., Sahoo, S., K., Mozumdar, S., Maitra, A., Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. J. Colloid Interface Sci., 2003. 258(2): p. 415-23.
    • Peracchia, M., T., Gref, R., Langer, R., PEG coated nanospheres from amphiphilic di and multiblock copolymers. J. Controlled Release, 1997.
    • 46: p. 223-31.
    • Venkatraman, S., Pan, J., Feng, M., Micelle like nanoparticles of PLAPEG-PLA triblock copolymer as chemotherapeutic carrier. Int. J. Pharm., 2005. 298: p. 219-32.
    • Arica, B., Lamprecht, A., In vitro evaluation of Betamethasone loaded nanoparticles. Drug Dev. Ind. Pharm., 2005. 31(1): p. 9-24.
    • Sehgal, D., Vijay, I., K., A method for the high efficiency of water soluble carbodiimide mediated amidation. Analytical Biochem., 1994. 218: p.
    • You, Y., Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents. Curr. Pharm. Des. Review, 2005. 11(13): p. 1695- 1717.
    • O'Dwyer, P., J., Weiss, R., B., Hypersensitivity reactions induced by etoposide. Cancer Treat. Rep., 1984. 68: p. 959-61.
    • Hande, K., R., Etoposide pharmacology. Semin. Oncol., 1992. 19(13): p.
    • Oncol. Res., 1996. 8(7-8): p. 281-6.
    • Wang, F., Bronich, T., K., Kabanov, A.,V., Rauh, R., D., Roovers, J., Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjug. Chem., 2005. 6(2): p. 397-405.
    • Newcomb, L., Gellman, S., Aromatic Stacking Interactions in Aqueous Solution: Evidence that neither Classical Hydrophobic Effects nor Dispersion Forces are important. J. Am. Chem. Soc., 1994. 116: p. 4993- 94.
    • Gadelle, F., Koros, W., J, Schechter, R., S., Solubilization of aromatic solutes in block copolymers. Macromolecules, 1995. 28: p. 4883.
    • Reddy, L., H., Sharma, R., K., Chuttani, K., Mishra, A.,K., Etoposideincorporated Tripalmitin Nanoparticles with different surface charge: Formulation, Characterization, Radiolabeling, and Biodistribution Studies. AAPS J 2004. 6.
    • Pharm. Pharmacol., 2006. 58(6): p. 801-8.
    • Valduga, C., J., Fernandes, D., C., Lo Prete, A., C., Azevedo, C., H., M., Rodrigues, D., G., Maranha, R., C,. Use of a cholesterol rich microemulsion that binds to low-density lipoprotein receptors as vehicle for etoposide. J. Pharm. Pharmacol., 2003. 55: p. 1615-22.
    • Patlolla, R., R., Vobalaboina, V., Pharmacokinetics and tissue distribution of etoposide delivered in parenteral emulsion. J. Pharm. Sci., 2005. 94(2): p. 437-45.
    • Controlled Release, 1999. 57: p. 259-68.
    • Mitra, A., Lin, S., Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems. J. Pharm. Pharmacol., 2003. 55(7): p. 895-902.
    • Rao, S., Krauss, N., E., Heerding, J., M., Swindell, C., S., Ringel, I., Orr, G., A., Horwitz, S., B., 3'-(p-azidobenzamido)taxol photolabels the Nterminal 31 amino acids of beta-tubulin. J. Biol. Chem., 1994. 269(5): p.
    • Acad. Sci. USA., 1997. 94: p. 10560-64.
    • Sackett, D., L., Vinca site agents induce structural changes in tubulin different from and antagonistic to changes induced by colchicine site agents. Biochemistry, 1995. 34: p. 7010-19.
    • Purcell, M., Neault, J., F., Tajmir-Riahi, H., A., Interaction of Taxol with human serum albumin. Biochem. Biophys. Acta., 2000. 1478: p. 61-68.
    • Liggins, R., T., Burt, H., M., Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int. J. Pharm., 2001. 222: p. 19-33.
    • Med. Chem., 2004. 11: p. 413-24.
    • Vitkup, D., Ringe, D., Petsko, G., A., Karplus, M., Solvent mobility and the protein 'glass' transition". Nat. Struct. Mol. Biol., 2001. 7: p. 34-38.
    • Liu, T., Petermann, J., Multiple melting behavior in isothermally coldcrystallized isotactic polystyrene Polymer, 2001. 42: p. 6453.
    • Busfield, W., K., Proschogo, P., Thermal analysis of palm stearin by DSC. J. Am. Oil Chem. Soc, 1990. 67(3): p. 171-175.
    • Yin, J., Noda, Y., Yotsuyanagi, T., Properties of poly (lactic-co-glycolic acid) nanospheres containing protease inhibitors: Camostat mesilate and nafamostat mesilate. Int. J. Pharm., 2006. 314: p. 46-55.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article