- [1] Batchelor, G. K. (1952) The effect of homogeneous turbulence on material lines and surfaces. Proc. Roy. Soc. A 213, 349-366.
- [2] Borghi, R. (1988) Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245-292.
- [3] Chatwin, P. C., Lewis, D. M. & Mole, N. (1996) Atmospheric diffusion: some new mathematical models. Adv. in Comp. Maths. 6, 227-242.
- [4] Chatwin, P. C., Lewis D. M. & Sullivan, P. J. (1995) Turbulent dispersion and the beta distribution. Environmetrics, 6, 395-402.
- [5] Chatwin, P. C. & Zimmerman, W. B. (1998) The probability structure associated with a simple model of turbulent dispersion. Environmetrics, 9, 131-138.
- [6] Corrsin, S. (1959) Outline of some topics in homogeneous turbulent flow. J. Geophys. Res. 64, 2134-2150.
- [7] Dahm, W. J. A., Southerland, K. B. & Buch, K. A. (1991) Direct, high resolution, fourdimensional measurements of the fine scale structure of S c ≫ 1 molecular mixing in turbulent flows. Phys. Fluids A, 3, 1115-1127.
- [8] Dopazo, C. (1975) Probability density function approach for a turbulent axisymmetric heated jet. Centreline evolution. Phys. Fluids, 18, 397-404.
- [9] Dopazo, C. (1994) Recent developments in pdf methods. In: P. A. Libby and F. A. Williams, editors, Turbulent Reacting Flows, pp. 375-474. Academic Press.
- [10] Eswaran, V. & Pope, S. B. (1988) Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids, 31, 506-520.
- [11] Hall, D. J., Waters, R. A., Marsland, G. W., Upton, S. L. & Emmott, M. A. (1991) Repeat variability in instantaneously released heavy gas clouds - some wind tunnel experiments. Technical Repot LR804(PA), National Energy Technology Centre, AEA Technology, Abingdon, Oxfordshire, UK.
- [12] Jaberi, F. A., Miller, R. S., Madnia, C. K. & Givi, P. (1996) Non-Gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech. 313, 241-282.
- [13] Kimura, Y. & Kraichnan, R. H. (1993) Statistics of an advected passive scalar. Phys. Fluids A, 5, 2264-2277.
- [14] Kowe, R. & Chatwin, P. C. (1985) Exact solutions for the probability density function of turbulent scalar fields. J. Eng. Maths. 19, 217-231.
- [15] Kuznetsov, V. R. & Sabel'nikov, V. A. (1990) Turbulence and Combustion. Hemisphere, New York.
- [16] Lewis, D. M. & Chatwin, P. C. (1997) A three-parameter PDF for the concentration of an atmospheric pollutant. J. Appl. Meteor. 36, 1064-1075.
- [17] Mole, N., Anderson, C. W., Nadarajah, S. & Wright, C. (1995) A generalized Pareto distribution model for high concentrations in short-range atmospheric dispersion. Environmetrics, 6, 595-606.
- [18] Mole, N., Chatwin, P. C. & Sullivan, P. J. (1993) Modelling concentration fluctuations in air pollution. In: A. J. Jakeman, M. B. Beck and M. J. McAleer, editors, Modelling Change in Environmental Systems, pp. 317-340. Wiley.
- [19] Monin, A. S. & Yaglom, A. M. (1971) In: J. L. Lumley, editor, Statistical Fluid Mechanics, Volume 1. MIT Press.
- [20] Munro, R. J., Chatwin, P. C. & Mole, N. (2001) The high concentration tails of the probability density function of a dispersing scalar in the atmosphere. Bound.-Layer Meteor. 98, 315-339.
- [21] Mylne, K. R. & Mason, P. J. (1991) Concentration fluctuation measurements in a dispersing plume at a range of up to 1000m. Quart. J. Roy. Met. Soc. 117, 177-206.
- [22] Ockendon, J. R., Howison, S. D., Lacey, A. A. & Movchan, A. B. (1999) Applied Partial Differential Equations. OUP.
- [23] Pope, S. B. (1979) The statistical theory of turbulent flames. Phil. Trans. Roy. Soc. A 219, 529-568.
- [24] Pope, S. B. (1985) Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119-192.
- [25] Sinai, Ya. G. & Yakhot, V. (1989) Limiting probability distributions of a passive scalar in a random velocity field. Phys. Rev. Lett. 63, 1962-1964.
- [26] Sullivan, P. J. & Ye, H. (1995) A prognosis for the sudden release of contaminant in an environmental flow. Environmetrics, 6, 627-636.
- [27] Tavoularis, S. & Corrsin, S. (1981) Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 104, 311-347.
- [28] Tennekes, H. & Lumley, J. L. (1972) A First Course in Turbulence. MIT Press.
- [29] Thomson, D. J. (1990) A stochastic model for the motion of particle pairs in isotropic highReynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 210, 113-153.
- [30] Townsend, A. A. (1951) The diffusion of heat spots in isotropic turbulence. Proc. Roy. Soc. A 209, 418-430.
- [31] Tsinober, A. (1998) Is concentrated vorticity that important? Eur. J. Mech. B/Fluids, 17, 421-449.
- [32] Yee, E. & Chan, R. (1997) A simple model for the probability density function of concentration fluctuations in atmospheric plumes. Atmos. Environment, 31, 991-1002.
- [33] Yeun, H. K. (2000) An investigation into an idealised model of turbulent dispersion. PhD thesis, University of Sheffield.
- [34] Zimmerman, W. B. (2001) Simulations of the probability structure of a dispersing passive scalar. Environmetrics, 12, 569-589.
- [35] Zimmerman, W. B. & Chatwin, P. C. (1995) Statistical fluctuations due to microscale mixing in a diffusion layer. Environmetrics, 6, 665-675.