LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A.; Rodrigues, Natércia D. N.; Cole-Filipiak, Neil C.; Quan, Wen-Dong; Stavros, Vasilios G. (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: RS, QD
Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2- ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC’s and E-EHMC’s excited state dynamics upon UV-B photoexcitation to the S1 (11ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 11ππ* to the S3 (11nπ*) state, followed by de-excitation from the 11nπ* to the ground electronic state (S0). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and EEHMC’s photochemistry in a more realistic, ‘closer-to-shelf’ environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 11ππ*state to S0.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • molecular complexity) to understand the photoprotection path- 16 S. Smolarek, A. Vdovin, D. L. Perrier, J. P. Smit, M. Drabbels ways of sunscreen agents in general, and E-EHMC's behaviour in and W. J. Buma, J. Am. Chem. Soc., 2010, 132, 6315.
    • particular. 17 N. D. N. Rodrigues, M. Staniforth, J. D. Young, Y. Peperstraete, N. C. Cole-Filipiak, J. R. Gord, P. S. Walsh, D. M. Hewett, T. S. Zwier and V. G. Stavros, Faraday Discuss., 2016, DOI: Acknowledgements 10.1039/C6FD00079G. 18 M. de Groot, E. V. Gromov, H. Ko¨ppel and W. J. Buma, Y. P. thanks the Ecole Normale Sup´erieure (ENS) de Cachan and J. Phys. Chem. B, 2008, 112, 4427.
    • French state for financing his studies. M. S. and N. D. N. R. thank 19 D. Shimada, R. Kusaka, Y. Inokuchi, M. Ehara and T. Ebata, the Engineering and Physical Sciences Research Council (EPSRC) Phys. Chem. Chem. Phys., 2012, 14, 8999.
    • for postdoctoral and doctoral funding respectively. L. A. B. and 20 M. D. Horbury, L. A. Baker, W. D. Quan, S. E. Greenough W. D. Q. thank the EPSRC for providing studentships under grant and V. G. Stavros, Phys. Chem. Chem. Phys., 2016, 18, 17691.
    • EP/F500378/1, through the Molecular Organisation and Assembly 21 M. Staniforth and V. G. Stavros, Proc. Math. Phys. Eng. Sci., in Cells Doctoral Training Centre. N. C. C. F. thanks the Lever- 2013, 469, 20130458.
    • hulme Trust for postdoctoral funding. V. G. S. thanks the EPSRC 22 E. M. M. Tan, M. Hilbers and W. J. Buma, J. Phys. Chem.
    • for an equipment grant (EP/J007153) and the Royal Society for a Lett., 2014, 5, 2464.
    • University Research Fellowship. The authors thank Drs Jamie 23 R. M. Hochstrasser, Acc. Chem. Res., 1968, 1, 266.
    • Young and Michael Horbury (University of Warwick) for their 24 Y. Miyazaki, Y. Inokuchi, N. Akai and T. Ebata, J. Phys.
    • technical assistance and for helpful comments when preparing Chem. Lett., 2015, 6, 1134.
    • the manuscript. 25 X. P. Chang, C. X. Li, B. B. Xie and G. Cui, J. Phys. Chem. A, 2015, 119, 11488.
    • References 26 Y. Miyazaki, K. Yamamoto, J. Aoki, T. Ikeda, Y. Inokuchi, M. Ehara and T. Ebata, J. Chem. Phys., 2014, 141, 244313.
    • 1 C. E. Crespo-Hern´andez, B. Cohen, P. M. Hare and B. Kohler, 27 V. G. Stavros, Nat. Chem., 2014, 6, 955. Chem. Rev., 2004, 104, 1977. 28 L. A. Baker, M. D. Horbury, S. E. Greenough, M. N. R.
    • 2 C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Ashfold and V. G. Stavros, Photochem. Photobiol. Sci., 2015, Crespo-Hern´andez and B. Kohler, Annu. Rev. Phys. Chem., 14, 1814. 2009, 60, 217. 29 L. A. Baker and V. G. Stavros, Sci. Prog., 2016, 99, 282-311.
    • 3 W. J. Schreier, T. E. Schrader, F. O. Koller, P. Gilch, C. E. 30 M. D. Horbury, L. A. Baker, W. D. Quan, J. D. Young, Crespo-Hern´andez, V. N. Swaminathan, T. Carell, W. Zinth M. Staniforth, S. E. Greenough and V. G. Stavros, J. Phys. and B. Kohler, Science, 2007, 315, 625. Chem. A, 2015, 119, 11989.
    • 4 G. P. Pfeifer, Y. H. You and A. Besaratinia, Mutat. Res., Fundam. 31 S. E. Greenough, M. D. Horbury, J. O. F. Thompson, Mol. Mech. Mutagen., 2005, 571, 19. G. M. Roberts, T. N. V. Karsili, B. Marchetti, D. Townsend
    • 5 W. W. Sprenger, W. D. Hoff, J. P. Armitage and K. J. and V. G. Stavros, Phys. Chem. Chem. Phys., 2014, 16, 16187. Hellingwerf, J. Bacteriol., 1993, 175, 3096. 32 A. Iqbal, L. J. Pegg and V. G. Stavros, J. Phys. Chem. A, 2008,
    • 6 K. J. Hellingwerf, J. Hendriks and T. Gensch, J. Phys. Chem. 112, 9531. A, 2003, 107, 1082. 33 U. Even, J. Jortner, D. Noy, N. Lavie and C. Cossart-Magos,
    • 7 U. K. Genick, S. M. Soltis, P. Kuhn, I. L. Canestrelli and J. Chem. Phys., 2000, 112, 8068. E. D. Getzoff, Nature, 1998, 392, 206. 34 S. E. Greenough, G. M. Roberts, N. A. Smith, M. D. Horbury,
    • 8 M. M. Caldwell, J. F. Bornman, C. L. Ballar´e, S. D. Flint and R. G. McKinlay, J. M. Zurek, M. J. Paterson, P. J. Sadler and G. Kulandaivelu, Photochem. Photobiol. Sci., 2007, 6, 252. V. G. Stavros, Phys. Chem. Chem. Phys., 2014, 16, 19141.
    • 9 G. I. Jenkins, Annu. Rev. Plant Biol., 2009, 60, 407. 35 L. A. Baker, M. D. Horbury, S. E. Greenough, P. M. Coulter,
    • 10 M. Vengris, D. S. Larsen, M. A. van der Horst, O. F. A. T. N. V. Karsili, G. M. Roberts, A. J. Orr-Ewing, M. N. R. Larsen, K. J. Hellingwerf and R. van Grondelle, J. Phys. Ashfold and V. G. Stavros, J. Phys. Chem. Lett., 2015, 6, 1363. Chem. B, 2005, 109, 4197. 36 M. P. Grubb, A. J. Orr-Ewing and M. N. R. Ashfold, Rev. Sci.
    • 11 E. M. M. Tan, S. Amirjalayer, B. H. Bakker and W. J. Buma, Instrum., 2014, 85, 064104. Faraday Discuss., 2013, 163, 321. 37 A. S. Chatterley, C. W. West, V. G. Stavros and J. R. R. Verlet,
    • 12 J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais and T. S. Zwier, Chem. Sci., 2014, 5, 3963. J. Am. Chem. Soc., 2014, 136, 14780. 38 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd
    • 13 L. A. Baker, M. D. Horbury, S. E. Greenough, F. Allais, P. S. edn, Springer, Singapore, 2011. Walsh, S. Habershon and V. G. Stavros, J. Phys. Chem. Lett., 39 L. Blancafirt, V. Ovejas, R. Montero, M. Fernandez-Fernandez 2016, 7, 56. and A. Longarte, J. Phys. Chem. Lett., 2016, 7, 1231.
    • 14 E. V. Gromov, I. Burghardt, H. Ko¨ppel and L. S. Cederbaum, 40 T. Ebata, 2016, Private communication. J. Phys. Chem. A, 2005, 109, 4623. 41 K. Pande, C. D. M. Hutchison, G. Groenhof, A. Aquila, J. S.
    • 15 T. N. V. Karsili, B. Marchetti, M. N. R. Ashfold and W. Domcke, Robinson, J. Tenboer, S. Basu, S. Boutet, D. P. DePonte, J. Phys. Chem. A, 2014, 118, 11999. M. Liang, T. A. White, N. A. Zatsepin, O. Yefanov, D. Morozov, D. Oberthuer, C. Gati, G. Subramanian, D. James, Y. Zhao, J. Koralek, J. Brayshaw, C. Kupitz, C. Conrad, S. RoyChowdhury, J. D. Coe, M. Metz, P. Lourdu Xavier, T. D. Grant, J. E. Koglin, G. Ketawala, R. Fromme, V. ˇSrajer, R. Henning, J. C. H. Spence, A. Ourmazd, P. Schwander, U. Weierstall, M. Frank, P. Fromme, A. Barty, H. N. Chapman, K. Moffat, J. J. van Thor and M. Schmidt, Science, 2016, 352, 725.
    • 42 S. Arai and M. C. Sauer Jr, J. Chem. Phys., 1966, 44, 2297.
    • 43 D. S. Larsen, I. H. M. van Stokkum, M. Vengris, M. A. van der Horst, F. L. de Weerd, K. J. Hellingwerf and R. van Grondelle, Biophys. J., 2004, 87, 1858.
    • 44 M. Vengris, I. H. M. van Stokkum, X. He, A. F. Bell, P. J. Tonge, R. van Grondelle and D. S. Larsen, J. Phys. Chem. A, 2004, 108, 4587.
    • 45 K. M. Hanson, S. Narayanan, V. M. Nichols and C. J. Bardeen, Photochem. Photobiol. Sci., 2015, 14, 1607.
    • 46 A. Espagne, D. H. Paik, P. Changenet-Barret, M. M. Martin and A. H. Zewail, ChemPhysChem, 2006, 7, 1717.
    • 47 T. M. Karpkird, S. Wanichweacharungruang and B. Albinsson, Photochem. Photobiol. Sci., 2009, 8, 1455.
    • 48 Y. Nosenko, G. Wiosna-Salyga, M. Kunitski, I. Petkova, A. Singh, W. J. Buma, R. P. Thummel, B. Brutschy and J. Waluk, Angew. Chem., Int. Ed., 2008, 47, 6037.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article