LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schmidt, Karl Michael (2001)
Publisher: Cambridge University Press
Languages: English
Types: Article
Subjects: QA
This paper presents a su± cient condition for a one-dimensional Dirac operator with a\ud potential tending to in¯nity at in¯nity to have no eigenvalues. It also provides a\ud quick proof (and suggests variations) of a related criterion given by Evans and Harris.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • L. H. Erbe and Q. K. Kong. Stieltjes integral inequalities of Gronwall type and applications. Annli Mat. Pura Appl. 157 (1990), 77{97.
    • A. Erd¶elyi. Note on a paper by Titchmarsh. Q. J. Math. Oxf. 14 (1963), 147{152.
    • W. D. Evans and B. J. Harris. Bounds for the point spectra of separated Dirac systems. Proc. R. Soc. Edinb. A 88 (1981), 1{15.
    • J. V. Herod. A Gronwall inequality for linear Stieltjes integrals. Proc. Am. Math. Soc. 23 (1969), 34{36.
    • D. B. Hinton. A Stieltjes{Volterra integral equation theory. Can. J. Math. 18 (1966), 314{ 331.
    • A. B. Mingarelli. On a Stieltjes version of Gronwall' s inequality. Proc. Am. Math. Soc. 82 (1981), 249{252.
    • M. S. Plesset. The Dirac electron in simple ¯elds. Phys. Rev. 41 (1932), 278{290.
    • B. W. Roos and W. C. Sangren. Spectra for a pair of singular ¯rst order di® erential equations. Proc. Am. Math. Soc. 12 (1961), 468{476.
    • M. E. Rose and R. R. Newton. Properties of Dirac wave functions in a central ¯eld. Phys. Rev. 82 (1951), 470{477.
    • W. W. Schmaedeke and G. R. Sell. The Gronwall inequality for modi¯ed Stieltjes integrals. Proc. Am. Math. Soc. 19 (1968), 1217{1222.
    • K. M. Schmidt. Dense point spectrum and absolutely continuous spectrum in spherically symmetric Dirac operators. Forum Math. 7 (1995), 459{475.
    • K. M. Schmidt. Absolutely continuous spectrum of Dirac systems with potentials in¯nite at in¯nity. Math. Proc. Camb. Phil. Soc. 122 (1997), 377{384.
    • K. M. Schmidt. A remark on the essential spectra of Dirac systems. Bull. Lond. Math. Soc. 32 (2000), 63{70.
    • K. M. Schmidt and O. Yamada. Spherically symmetric Dirac operators with variable mass and potentials in¯nite at in¯nity. Proc. RIMS, Kyoto Univ. 34 (1998), 211{227.
    • E. C. Titchmarsh. On the nature of the spectrum in problems of relativistic quantum mechanics. Q. J. Math. Oxf. 12 (1961), 227{240.
    • J. Weidmann. Oszillationsmethoden fur Systeme gewohnlicher Di® erentialgleichungen. Math. Z. 119 (1971), 349{373.
    • J. Weidmann. Absolutstetiges Spektrum bei Sturm{Liouville-Operatoren und Diracsystemen. Math. Z. 180 (1982), 423{427.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article