LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baig, Hasan; Montecucco, Andrea; Siviter, Jonathan; Li, Wenguang; Paul, Manosh; Sweet, Tracy; Gao, Min; Mullen, Paul A.; Marai, Elena Ana; Knox, Andrew R.; Mallick, Tapas (2016)
Publisher: AIP Publishing
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1063/1.4962070
Low concentrating photovoltaic (LCPV) systems produces higher electrical output per unit solar cell compared to typical PV systems. The high efficiency Si solar cells can be utilized with little design and manufacturing changes for these applications. However, a key barrier towards achieving economic viability and the widespread adoption of LCPV technologies is the losses related to high operating temperature. In the present study, we evaluate the performance 3D low concentration system designed for 3.6×, using a reflective Cross compound parabolic concentrator (CCPC) and a Laser Grooved Buried Contact solar cell having an area of 50*50mm2. Results demonstrate the losses occurring due to the temperature rise of the solar cell under concentration and we analyze the potential which could be utilized for low grade heating applications.

Share - Bookmark

Download from

Funded by projects

Cite this article