LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
He, Qian; Miedziak, Peter John; Kesavan, Lokesh; Dimitratos, Nikolaos; Meenakshisundaram, Sankar; Lopez-Sanchez, Jose Antonio; Forde, Michael M.; Edwards, Jennifer Kelly; Knight, David William; Taylor, Stuart Hamilton; Kiely, Christopher John; Hutchings, Graham John (2013)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
Trimetallic Au–Pd–Pt nanoparticles have been supported on activated carbon by the sol-immobilisation method. They are found to be highly active and selective catalysts for the solvent-free aerobic oxidation of benzyl alcohol. The addition of Pt promotes the selectivity to the desired product benzaldehyde at the expense of toluene formation. Detailed aberration corrected STEM-XEDS analysis confirmed that the supported particles are indeed Au–Pd–Pt ternary alloys, but also identified composition fluctuations from particle-to-particle which vary systematically with nanoparticle size.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 W. J. Mijs and C. R. H. I. de Jonge, Organic syntheses by oxidation with metal compounds, New York, Plenum Press, 1986.
    • 2 R. A. Sheldon and J. K. Kochi, Metal-catalyzed oxidations of organic compounds: mechanistic principles and synthetic methodology including biochemical processes, Academic Press, New York, 1981.
    • 3 G. Cainelli and G. Cardillo, Chromium oxidations in organic chemistry, Springer-Verlag, Berlin; New York, 1984.
    • 4 D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight and G. J. Hutchings, Science, 2006, 311, 362-365.
    • 5 J. A. Lopez-Sanchez, N. Dimitratos, P. Miedziak, E. Ntainjua, J. K. Edwards, D. Morgan, A. F. Carley, R. Tiruvalam, C. J. Kiely and G. J. Hutchings, Phys. Chem. Chem. Phys., 2008, 10, 1921-1930.
    • 6 N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. F. Carley, R. Tiruvalam, C. J. Kiely, D. Bethell and G. J. Hutchings, Phys. Chem. Chem. Phys., 2009, 11, 5142-5153.
    • 7 J. C. Pritchard, Q. He, E. N. Ntainjua, M. Piccinini, J. K. Edwards, A. AV.ieHweArzritnicgl,e Online A. F. Carley, J. A. Moulijn, C. J. Kiely and G. J. Hutchings, Green Chem., 2010, 12, 915-921.
    • 8 M. Sankar, E. Nowicka, R. Tiruvalam, Q. He, S. H. Taylor, C. J. Kiely, D. Bethell, D. W. Knight and G. J. Hutchings, Chem.-Eur. J., 2011, 17, 6524-6532.
    • 9 R. C. Tiruvalam, J. C. Pritchard, N. Dimitratos, J. A. Lopez-Sanchez, J. K. Edwards, A. F. Carley, G. J. Hutchings and C. J. Kiely, Faraday Discuss., 2011, 152, 63-86.
    • 10 S. Meenakshisundaram, E. Nowicka, P. J. Miedziak, G. L. Brett, R. L. Jenkins, N. Dimitratos, S. H. Taylor, D. W. Knight, D. Bethell and G. J. Hutchings, Faraday Discuss., 2010, 145, 341-356.
    • 11 S. S. Hladyi, M. K. Starchevsky, Y. A. Pazdersky, M. N. Vargaftik and I. I. Moiseev, Mendeleev Commun., 2002, 12, 45-46.
    • 12 A. Villa, D. Wang, N. Dimitratos, D. S. Su, V. Trevisan and L. Prati, Catal. Today, 2010, 150, 8-15.
    • 13 J. Chen, Q. H. Zhang, Y. Wang and H. L. Wan, Adv. Synth. Catal., 2008, 350, 453-464.
    • 14 J. Pritchard, L. Kesavan, M. Piccinini, Q. He, R. Tiruvalam, N. Dimitratos, J. A. LopezSanchez, A. F. Carley, J. K. Edwards, C. J. Kiely and G. J. Hutchings, Langmuir, 2010, 26, 16568-16577.
    • 15 N. Braidy, Z. J. Jakubek, B. Simard and G. A. Botton, Microsc. Microanal., 2008, 14, 166- 175.
    • 16 R. F. Egerton, P. Li and M. Malac, Micron, 2004, 35, 399-409.
    • 17 D. Ferrer, D. A. Blom, L. F. Allard, S. Mejia, E. Perez-Tijerina and M. Jose-Yacaman, J. Mater. Chem., 2008, 18, 2442-2446.
    • 18 D. Ferrer, A. Torres-Castro, X. Gao, S. Sepulveda-Guzman, U. Ortiz-Mendez and M. JoseYacaman, Nano Lett., 2007, 7, 1701-1705.
    • 19 M. R. Ward, T. Hyde, E. D. Boyes and P. L. Gai, ChemCatChem, 2012, 4, 1622-1631.
    • 20 M. Watanabe, A. Yasuhara and E. Okunishi, Microsc. Microanal., 2012, 18, 974-975.
    • 21 Z. M. Peng and H. Yang, Nano Today, 2009, 4, 143-164.
    • 22 N. Braidy, G. R. Purdy and G. A. Botton, Acta Mater., 2008, 56, 5972-5983.
    • 23 H. B. Liu, U. Pal and J. A. Ascencio, J. Phys. Chem. C, 2008, 112, 19173-19177.
    • 24 K. Yun, Y. H. Cho, P. R. Cha, J. Lee, H. S. Nam, J. S. Oh, J. H. Choi and S. C. Lee, Acta Mater., 2012, 60, 4908-4916.
    • 25 D. Alloyeau, G. Prevot, Y. Le Bouar, T. Oikawa, C. Langlois, A. Loiseau and C. Ricolleau, Phys. Rev. Lett., 2010, 105, 255901.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article