Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cox, Anton; Martin, Paul; Parker, Alison; Xi, Changchang (2004)
Publisher: Elsevier
Journal: Journal of Algebra
Languages: English
Types: Article
Subjects: QA, Algebra and Number Theory, 20C08, Mathematics - Representation Theory, Mathematics - Quantum Algebra
We give an axiomatic framework for studying the representation theory of towers of algebras. We introduce a new class of algebras, contour algebras, generalising (and interpolating between) blob algebras and cyclotomic Temperley–Lieb algebras. We demonstrate the utility of our formalism by applying it to this class.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. A. Beilinson, J. N. Bernstein, P. Deligne, Faisceaux pervers, Ast´erisque 100.
    • [2] M. Bloss, G-colored partition algebras as centralizer algebras of wreath products, J. Algebra 256 (2003) 690-710.
    • [3] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937) 857-872.
    • [4] W. Brown, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955) 1-22.
    • [5] E. Cline, B. Parshall, L. Scott, Finite-dimensional algebras and highest weight categories, J. reine angew. Math. 391 (1988) 85-99.
    • [6] E. Cline, B. Parshall, L. Scott, Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124, 1996.
    • [7] A. G. Cox, M. D. Visscher, P. P. Martin, The blocks of the Brauer algebra in characteristic zero, preprint.
    • [8] A. G. Cox, J. J. Graham, P. P. Martin, The blob algebra in positive characteristic, J. Algebra 266 (2003) 584-635.
    • [9] V. Dlab, Properly stratified algebras, C. R. Acad. Sci. Paris S´er. I Math. 331 (2000) 191-196.
    • [10] V. Dlab, C. M. Ringel, Quasi-hereditary algebras, Illinois J. Math. 33 (1989) 280-291.
    • [11] S. Donkin, The q-Schur algebra, Vol. 253 of LMS Lecture Notes Series, Cambridge University Press, 1998.
    • [12] W. F. Doran, D. B. Wales, P. J. Hanlon, On the semisimplicity of the Brauer centralizer algebras, J. Algebra 211 (1999) 647-685.
    • [13] F. M. Goodman, P. de la Harpe, V. F. R. Jones, Coxeter graphs and towers of algebras, MSRI Publications, vol. 14, Springer, 1989.
    • [14] F. M. Goodman, H. Hauschild, Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus, preprint.
    • [15] J. J. Graham, G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996) 1-34.
    • [16] J. A. Green, Polynomial representations of GLn, Lecture Notes in Mathematics 830, Springer, 1980.
    • [17] R. M. Green, Generalized Temperley-Lieb algebras and decorated tangles, J. Knot Theory Ramifications 7 (1998) 155-171.
    • [18] R. M. Green, Tabular algebras and their asymptotic versions, J. Algebra 252 (2002) 27-64.
    • [19] J. C. Jantzen, Representations of algebraic groups, 2nd Edition, Vol. 107 of Mathematical Surveys and Monographs, AMS, 2003.
    • [20] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983) 1-25.
    • [21] V. F. R. Jones, Planar algebras I, preprint (1997).
    • [22] S. Ko¨nig, C. Xi, On the structure of cellular algebras, in: Algebras and modules II (Geiranger, 1996), Vol. 24 of CMS Conf. Proc., AMS, 1998, pp. 365-386.
    • [23] P. P. Martin, Potts models and related problems in statistical mechanics, World Scientific, Singapore, 1991.
    • [24] P. P. Martin, Temperley-Lieb algebras for non planar statistical mechanics - the partition algebra, J. Knot Theory Ramifications 3 (1994) 51-82, originally appeared as preprint YCTP-P34-92 in 1992.
    • [25] P. P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A 33 (2000) 3669-3695.
    • [26] P. P. Martin, M. Alvarez, R. M. Green, A. E. Parker, Towers of recollement and bases for diagram algebras: planar diagrams and a little beyond, preprint.
    • [27] P. P. Martin, A. Elgamal, Ramified partition algebras, Math. Z. 246 (2004) 473-500.
    • [28] P. P. Martin, S. Ryom-Hansen, Virtual algebraic Lie theory: Tilting modules and Ringel duals for blob algebras, Proc. LMS 89 (2004) 655-675.
    • [29] P. P. Martin, H. Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. 30 (1994) 189-206.
    • [30] P. P. Martin, D. Woodcock, On the structure of the blob algebra, J. Algebra 225 (2000) 957-988.
    • [31] P. P. Martin, D. Woodcock, D. Levy, A diagrammatic approach to Hecke algebras of the reflection equation, J. Phys. A 33 (2000) 1265-1296.
    • [32] S. Martin, Schur algebras and representation theory, Cambridge University Press, 1993.
    • [33] V. Mazorchuk, On the structure of Brauer semigroup and its partial analogue, Problems in Algebra 13 (1998) 29-45.
    • [34] V. Mazorchuk, Endomorphisms of Bn, PBn and Cn, Comm. in Algebra 30 (2002) 3489-3513.
    • [35] H. Rui, A criterion on the semisimple Brauer algebras, J. Comb. Theory Ser. A 111 (2005) 78-88.
    • [36] H. Rui, C. Xi, The representation theory of cyclotomic Temperley-Lieb algebras, Comment. Math. Helv. 79 (2004) 427-450.
    • [37] A. M. Vershik, A. Y. Okun'kov, An inductive method of expounding the representation theory of symmetric groups, Russ. Math. Surv. 51 (1996) 355- 356.
    • [38] H. Wenzl, On the structure of Brauer's centralizer algebra, Ann. Math. 128 (1988) 173-193.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article