Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Neu, Urs; Akperov, Mirseid G.; Bellenbaum, Nina; Benestad, Rasmus; Blender, Richard; Caballero, Rodrigo; Cocozza, Angela; Dacre, Helen; Feng, Yang; Fraedrich, Klaus; Grieger, Jens; Gulev, Sergey; Hanley, John; Hewson, Tim; Inatsu, Masaru; Keay, Kevin; Kew, Sarah F.; Kindem, Ina; Leckebusch, Gregor C.; Liberato, Margarida L. R.; Lionello, Piero; Mokhov, Igor I.; Pinto, Joaquim G; Raible, Christoph C.; Reale, Marco; Rudeva, Irina; Schuster, Mareike; Simmonds, Ian; Sinclair, Mark; Sprenger, Michael ... view all 36 authors View less authors (2013)
Journal: Bulletin of the American Meteorological Society
Languages: English
Types: Unknown,Article
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Akperov, M. G., M. Yu, E. Bardin, M. Volodin, G. S. Golitsyn, and I. I. Mokhov, 2007: Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model. Izv., Atmos. Oceanic Phys., 43, 705-712.
    • Allen, J. T., A. B. Pezza, and M. T. Black, 2010: Explosive cyclogenesis: A global climatology comparing multiple reanalyses. J. Climate, 23, 6468-6484.
    • Bardin, M. Yu., and A. B. Polonsky, 2005: North Atlantic oscillation and synoptic variability in the EuropeanAtlantic region in winter. Izv., Atmos. Oceanic Phys., 41, 127-136.
    • Benestad, R. E., and D. Chen, 2006: The use of a calculus-based cyclone identification method for generating storm statistics. Tellus, 58A, 473-486.
    • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 2276-2301.
    • Bertotti, L., and Coauthors, 2012: Performance of different forecast systems in an exceptional storm in the Western Mediterranean Sea. Quart. J. Roy. Meteor. Soc., 138, 34-55.
    • Blender, R., and M. Schubert, 2000: Cyclone tracking in different spatial and temporal resolutions. Mon. Wea. Rev., 128, 377-384.
    • -, K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727-741.
    • Čampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725-740.
    • Dacre, H. F., M. K. Hawcroft, M. A. Stringer, and K. I. Hodges, 2012: An extratropical cyclone atlas: A tool for illustrating cyclone structure and evolution. Bull. Amer. Meteor. Soc., 93, 1497-1502.
    • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 1972-1990.
    • Della-Marta, P. M., and J. G. Pinto, 2009: Statistical uncertainty of changes in winter storms over the North Atlantic and Europe in an ensemble of transient climate simulations. Geophys. Res. Lett., 36, L14703, doi:10.1029/2009GL038557.
    • Hanley, J., and R. Caballero, 2012: Objective identification and tracking of multicentre cyclones in the ERAInterim reanalysis data set. Quart. J. Roy. Meteor. Soc., 138, 612-625.
    • Hewson, T. D., 1997: Objective identification of frontal wave cyclones. Meteor. Appl., 4, 311-315.
    • -, and H. A. Titley, 2010: Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteor. Appl., 17, 355-381.
    • -, G. C. Craig, and C. Claud, 2000: Evolution and mesoscale structure of a polar low outbreak. Quart. J. Roy. Meteor. Soc., 126, 1031-1063.
    • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 3458-3465.
    • -, 2008: Confidence intervals and significance tests for spherical data derived from feature tracking. Mon. Wea. Rev., 136, 1758-1777.
    • -, B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 2012-2037.
    • -, R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERAInterim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 4888-4906.
    • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041-1061.
    • Inatsu, M., 2009: The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones. Atmos. Sci. Lett., 10, 267-272.
    • Jung, T., S. K. Gulev, I. Rudeva, and V. Soloviov, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132, 1839-1858.
    • Kew, S. F., M. Sprenger, and H. C. Davies, 2010: Potential vorticity anomalies of the lowermost stratosphere: A 10-yr winter climatology. Mon. Wea. Rev., 138, 1234-1249.
    • Kouroutzoglou, J., H. A. I. Flocas, K. Keay, I. Simmonds, and M. Hatzaki, 2012: On the vertical structure of Mediterranean explosive cyclones. Theor. Appl. Climatol., 110, 155-176, doi:10.1007/s00704-012- 0620-3.
    • Leckebusch, G. C., B. Koffi, U. Ulbrich, J. G. Pinto, T. Spangehl, and S. Zacharias, 2006: Analysis of frequency and intensity of winter storm events in Europe on synoptic and regional scales from a multimodel perspective. Climate Res., 31, 59-74.
    • Liberato, M. R. L., J. G. Pinto, I. F. Trigo, and R. M. Trigo, 2011: Klaus-An exceptional winter storm over northern Iberia and southern France. Weather, 66, 330-334.
    • Lionello, P., F. Dalan, and E. Elvini, 2002: Cyclones in the Mediterranean region: The present and the doubled CO2 climate scenarios. Climate Res., 22, 147-159.
    • Löptien, U., O. Zolina, S. K. Gulev, M. Latif, and V. Soloviov, 2008: Cyclone life cycle characteristics over the Northern Hemisphere in coupled GCMs. Climate Dyn., 31, 507-532.
    • McInnes, K. L., and G. D. Hubbert, 1996: Extreme events and the impact of climate change on Victoria's coastline. Environment Protection Authority, State Government of Victoria Publ. 488, 69 pp.
    • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centers from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155-166.
    • Pinto, J. G., T. Spangehl, U. Ulbrich, and P. Speth, 2005: Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatolog y. Meteor. Z, 14, 823-838.
    • -, S. Zacharias, A. H. Fink, G. C. Leckebusch, and U. Ulbrich, 2009: Factors contributing to the development of extreme North Atlantic cyclones and their relation with the NAO. Climate Dyn., 32, 711-737.
    • Raible, C. C., P. M. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880-897.
    • -, B. Ziv, H. Saaroni, and M. Wild, 2010: Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5. Climate Dyn., 35, 473-488.
    • Rudeva, I., and S. K. Gulev, 2007: Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Wea. Rev., 135, 2568-2587.
    • Schneidereit, A., R. Blende, and K. Fraedrich, 2010: A radius-depth model for midlatitude cyclones in reanalysis data and simulations. Quart. J. Roy. Meteor. Soc., 136, 50-60.
    • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.-Ocean, 33, 1-23.
    • Sienz, F., A. Schneidereit, R. Blender, K. Fraedrich, and F. Lunkeit, 2010: Extreme value statistics for North Atlantic cyclones. Tellus, 62A, 347-360.
    • Simmonds, I., R. J. Murray, and R. M. Leighton, 1999: A refinement of cyclone tracking methods with data from FROST. Aust. Meteor. Mag., Special Issue, 35-49.
    • -, C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 5777-5796.
    • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 2239-2256.
    • -, 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 591-608.
    • Trewin, B., 2002: Charts from the past-24 May, 1994. Bull. Aust. Meteor. Ocean. Soc., 17, 74.
    • Trigo, I. F., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dyn., 26, 127-143.
    • Ulbrich, U., G. C. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117-131.
    • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP/NCAR reanalysis for 1958-2001. J. Climate, 19, 3145-3166.
    • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958-2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 2486-2507.
    • Zolina, O., and S. K. Gulev, 2002: Improving accuracy of mapping cyclone numbers and frequencies. Mon. Wea. Rev., 130, 748-759.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Published in

Funded by projects

Cite this article