LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jin, C.; Langston, P.A.; Pavlovskaya, G.E.; Hall, M.R.; Rigby, S.P. (2016)
Publisher: American Physical Society
Languages: English
Types: Unknown
Subjects:
We present a strong relationship between the microstructural characteristics of, and the fluid velocity fields confined to, three-dimensional random porous materials. The relationship is revealed through simultaneously extracting correlation functions R-uu (r) of the spatial (Eulerian) velocity fields and microstructural two-point correlation functions S-2(r) of the random porous heterogeneous materials. This demonstrates that the effective physical transport properties depend on the characteristics of complex pore structure owing to the relationship between R-uu (r) and S-2(r) revealed in this study. Further, the mean excess plot was used to investigate the right tail of the streamwise velocity component that was found to obey light-tail distributions. Based on the mean excess plot, a generalized Pareto distribution can be used to approximate the positive streamwise velocity distribution.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 50 100 150 200 separation distance r (pixels) 250
    • [1] M. Sahimi, Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches (Wiley VCH, Berlin, 1995).
    • [2] F. A. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic Press, New York, 1991).
    • [3] P. Adler, Porous Media: Geometry and Transports (ButterworthHeinemann, Stoneham, MA, 1992).
    • [4] H. Darcy, Les fontaines publiques de la ville de Dijon: Exposition et application (Victor Dalmont, Paris, 1856).
    • [5] J. Kozeny, Sitzungsber. Akad. Wiss. Wien. 136, 271 (1927).
    • [6] P. Carman, J. Agricult. Sci. 29, 262 (1937).
    • [7] P. Carman, Flow of Gases Through Porous Media (Butterworths Scientific Publications, London, 1956).
    • [8] P. Debye, H. Anderson Jr, and H. Brumberger, J. Appl. Phys. 28, 679 (1957).
    • [9] A. Thompson, A. Katz, and C. Krohn, Adv. Phys. 36, 625 (1987).
    • [10] C. Scholz, F. Wirner, J. Go¨tz, U. Ru¨de, G. E. Schro¨der-Turk, K. Mecke, and C. Bechinger, Phys. Rev. Lett. 109, 264504 (2012).
    • [11] C. Scholz, F. Wirner, M. A. Klatt, D. Hirneise, G. E. Schro¨derTurk, K. Mecke, and C. Bechinger, Phys. Rev. E 92, 043023 (2015).
    • [12] S. Prager, Phys. Fluids 4, 1477 (1961).
    • [13] J. G. Berryman, J. Chem. Phys. 82, 1459 (1985).
    • [14] J. G. Berryman and S. C. Blair, J. Appl. Phys. 60, 1930 (1986).
    • [15] J. Rubinstein and S. Torquato, J. Fluid Mech. 206, 25 (1989).
    • [16] S. Torquato, Appl. Mech. Rev. 44, 37 (1991).
    • [17] P. P. Mitra, P. N. Sen, L. M. Schwartz, and P. Le Doussal, Phys. Rev. Lett. 68, 3555 (1992).
    • [18] S. C. Blair, P. A. Berge, and J. G. Berryman, J. Geophys. Res.: Solid Earth 101, 20359 (1996).
    • [19] S. Torquato and D. C. Pham, Phys. Rev. Lett. 92, 255505 (2004).
    • [20] D. Kandhai, D. Hlushkou, A. G. Hoekstra, P. M. A. Sloot, H. Van As, and U. Tallarek, Phys. Rev. Lett. 88, 234501 (2002).
    • [21] B. Bijeljic, P. Mostaghimi, and M. J. Blunt, Phys. Rev. Lett. 107, 204502 (2011).
    • [22] T. Le Borgne, M. Dentz, and J. Carrera, Phys. Rev. Lett. 101, 090601 (2008).
    • [23] S. Saleh, J. Thovert, and P. Adler, Exp. Fluids 12, 210 (1992).
    • [24] Y. Kutsovsky, L. Scriven, H. Davis, and B. Hammer, Phys. Fluids 8, 863 (1996).
    • [25] J. D. Seymour and P. T. Callaghan, AIChE J. 43, 2096 (1997).
    • [26] B. Manz, L. Gladden, and P. Warren, AIChE J. 45, 1845 (1999).
    • [27] S. S. Datta, H. Chiang, T. S. Ramakrishnan, and D. A. Weitz, Phys. Rev. Lett. 111, 064501 (2013).
    • [28] S. Ghosh and S. Resnick, Stoch. Process. Appl. 120, 1492 (2010).
    • [29] D. H. Rothman, Geophysics 53, 509 (1988).
    • [30] S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998).
    • [31] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001).
    • [32] C. Pan, L.-S. Luo, and C. T. Miller, Comput. Fluids 35, 898 (2006).
    • [33] P. Langston, U. Tu¨zu¨n, and D. Heyes, Chem. Eng. Sci. 50, 967 (1995).
    • [34] M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and C. Pentland, Adv. Water Res. 51, 197 (2013).
    • [35] I. Taina, R. Heck, and T. Elliot, Can. J. Soil Sci. 88, 1 (2008).
    • [36] O. Rozenbaum and S. R. du Roscoat, Phys. Rev. E 89, 053304 (2014).
    • [37] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Vol. 16 (Springer Science & Business Media, Berlin, 2002).
    • [38] S. Torquato and G. Stell, J. Chem. Phys. 77, 2071 (1982).
    • [39] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 76, 031110 (2007).
    • [40] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 77, 031135 (2008).
    • [41] Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci. USA 106, 17634 (2009).
    • [42] J. G. Berryman, J. Appl. Phys. 57, 2374 (1985).
    • [43] S. Torquato and G. Stell, J. Chem. Phys. 82, 980 (1985).
    • [44] J. Bear, Dynamics of Fluids in Porous Media (Dover Civil and Mechanical Engineering, London, 1989).
    • [45] P. de Anna, T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, and P. Davy, Phys. Rev. Lett. 110, 184502 (2013).
    • [46] P. K. Kang, P. Anna, J. P. Nunes, B. Bijeljic, M. J. Blunt, and R. Juanes, Geophys. Res. Lett. 41, 6184 (2014).
    • [47] H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1972).
    • [48] R. S. Maier, D. Kroll, Y. Kutsovsky, H. Davis, and R. S. Bernard, Phys. Fluids 10, 60 (1998).
    • [49] M. Siena, M. Riva, J. D. Hyman, C. L. Winter, and A. Guadagnini, Phys. Rev. E 89, 013018 (2014).
    • [50] S. Whitaker, AIChE J. 13, 420 (1967).
    • [51] D. R. Lester, G. Metcalfe, and M. G. Trefry, Phys. Rev. Lett. 111, 174101 (2013).
    • [52] B. Bijeljic, A. Raeini, P. Mostaghimi, and M. J. Blunt, Phys. Rev. E 87, 013011 (2013).
    • [53] J. R. Hosking and J. R. Wallis, Technometrics 29, 339 (1987).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | Towards Realisation of Unt...

Cite this article