LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wain, Louise V; Shrine, Nick; Miller, Suzanne; Jackson, Victoria E; Ntalla, Ioanna; Artigas, María Soler; Billington, Charlotte K; Kheirallah, Abdul Kader; Allen, Richard; Cook, James P; Probert, Kelly; Obeidat, Ma'en; Bossé, Yohan; Hao, Ke; Postma, Dirkje S; Paré, Peter D; Ramasamy, Adaikalavan; Mägi, Reedik; Mihailov, Evelin; Reinmaa, Eva; Melén, Erik; O'Connell, Jared; Frangou, Eleni; Delaneau, Olivier; Freeman, Colin; Petkova, Desislava; McCarthy, Mark; Sayers, Ian; Deloukas, Panos; Hubbard, Richard ... view all 39 authors View less authors (2015)
Publisher: Elsevier
Journal: The Lancet. Respiratory Medicine
Languages: English
Types: Article
Subjects: Articles

Classified by OpenAIRE into

mesheuropmc: respiratory tract diseases
Background\ud \ud Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health.\ud \ud Methods\ud \ud We sampled individuals of European ancestry from UK Biobank, from the middle and extremes of the forced expiratory volume in 1 s (FEV1) distribution among heavy smokers (mean 35 pack-years) and never smokers. We developed a custom array for UK Biobank to provide optimum genome-wide coverage of common and low-frequency variants, dense coverage of genomic regions already implicated in lung health and disease, and to assay rare coding variants relevant to the UK population. We investigated whether there were shared genetic causes between different phenotypes defined by extremes of FEV1. We also looked for novel variants associated with extremes of FEV1 and smoking behaviour and assessed regions of the genome that had already shown evidence for a role in lung health and disease. We set genome-wide significance at p<5 × 10−8.\ud \ud Findings\ud \ud UK Biobank participants were recruited from March 15, 2006, to July 7, 2010. Sample selection for the UK BiLEVE study started on Nov 22, 2012, and was completed on Dec 20, 2012. We selected 50 008 unique samples: 10 002 individuals with low FEV1, 10 000 with average FEV1, and 5002 with high FEV1 from each of the heavy smoker and never smoker groups. We noted a substantial sharing of genetic causes of low FEV1 between heavy smokers and never smokers (p=2·29 × 10−16) and between individuals with and without doctor-diagnosed asthma (p=6·06 × 10−11). We discovered six novel genome-wide significant signals of association with extremes of FEV1, including signals at four novel loci (KANSL1, TSEN54, TET2, and RBM19/TBX5) and independent signals at two previously reported loci (NPNT and HLA-DQB1/HLA-DQA2). These variants also showed association with COPD, including in individuals with no history of smoking. The number of copies of a 150 kb region containing the 5′ end of KANSL1, a gene that is important for epigenetic gene regulation, was associated with extremes of FEV1. We also discovered five new genome-wide significant signals for smoking behaviour, including a variant in NCAM1 (chromosome 11) and a variant on chromosome 2 (between TEX41 and PABPC1P2) that has a trans effect on expression of NCAM1 in brain tissue.\ud \ud Interpretation\ud \ud By sampling from the extremes of the lung function distribution in UK Biobank, we identified novel genetic causes of lung function and smoking behaviour. These results provide new insight into the specific mechanisms underlying airflow obstruction, COPD, and tobacco addiction, and show substantial shared genetic architecture underlying airflow obstruction across individuals, irrespective of smoking behaviour and other airway disease.

Share - Bookmark

Funded by projects

  • RCUK | A program of research in c...
  • RCUK | A program of research in r...
  • RCUK | Study of common and rare g...
  • RCUK | Defining the genetic contr...
  • EC | BBMRI-LPC
  • EC | HIGEN
  • EC | BIOMARCARE
  • EC | BESTAGEING

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok