Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Jianfeng; Sun, Zhongyuan; Luo, Hongyu; Yan, Zhijun; Zhou, Kaiming; Liu, Yong; Zhang, Lin (2014)
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Optics
We demonstrate an all-fiber Tm3+-doped silica fiber laser operating at a wide selectable wavelength range by using different fiber Bragg gratings (FBGs) as wavelength selection elements. With a specifically designed high reflective (HR) FBG and the fiber end as an output coupler, the lasing in the range from 1975 nm to 2150 nm with slope efficiency of >30% can be achieved. By employing a low reflective (LR) FBG as the output coupler, the obtainable wavelengths were extended to the range between 1925 nm and 2200 nm which is the reported longest wavelength from the Tm3+-doped silica fiber lasers. Furthermore, by employing a FBG array in the laser cavity and inducing bend loss between adjacent FBGs in the array, six switchable lasing wavelengths were achieved. © 2014 Optical Society of America.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 17. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739-4742 (2013).
    • 18. M. Tokurakawa, J. M. O. Daniel, S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength swept Tm-Doped fiber laser,” in CLEO Europe-IQEC (2013), pp. 12-16.
    • 19. Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm: silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
    • 20. S. D. Jackson, F. Bugge, and G. Erbert, “High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers,” Opt. Lett. 32(22), 3349-3351 (2007).
    • 21. A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett. 46(24), 1617-1618 (2010).
    • 22. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415-28422 (2013).
    • 23. S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603-604 (2013).
    • 24. R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912-1913 (1991).
    • 25. R. Allen and L. Esterowitz, “CW diode pumped 2.3 μm fiber laser,” Appl. Phys. Lett. 55(8), 721-722 (1989).
    • 26. R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5-6), 563-570 (1991).
    • 27. R. M. El-Agmy and N. M. Al-Hosiny, “2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fiber lasers,” Electron. Lett. 46, 936-937 (2010).
    • 28. T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936-943 (1999).
    • 29. A. Guhur and S. D. Jackson, “Efficient holmium-doped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm,” Opt. Express 18(19), 20164-20169 (2010).
    • 30. J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3-4), 345-349 (2004).
    • 31. G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196-197.
    • 32. S. Tanaka, H. Yokosuka, T. Ogawa, and N. Takahashi, “Wavelength-switchable fiber laser for thermally stabilized fiber Bragg grating vibration sensor array,” in Proc. IEEE Sensors (2004), pp. 1301-1304.
    • 33. Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technol. Lett. 14(5), 612-614 (2002).
    • 34. C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313-317 (2004).
    • 35. J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880-883 (2007).
    • 36. I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65-68 (2005).
    • 37. W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601-4607 (2013).
    • 38. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).
    • 39. Y. Kimura and M. Nakazawa, “Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm,” J. Appl. Phys. 64(2), 516-520 (1988).
    • 40. M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, “Comparison between analytical solution and experimental setup of a short long ytterbium doped fiber laser,” Opt. Photonics J. 2(2), 65-72 (2012).
    • 41. E. Desurvire, “Analysis of gain difference between forward-and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711-714 (1992).
    • 42. A. Yeniay and R. Gao, “Single stage high power L-band EDFA with multiple C-band seeds,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002).
    • 43. E. Yahel and A. Hardy, “Amplified spontaneous emission in high-power, Er3+-Yb3+ codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B 20(6), 1198-1203 (2003).
    • 44. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823-825 (1989).
    • 45. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19-26 (1996).
    • 20 (b)
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Published in

Funded by projects


Cite this article