LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Loureiro, Ana F. (2008)
Languages: English
Types: Doctoral thesis
Subjects: QA165, QA351

Classified by OpenAIRE into

arxiv: Mathematics::Classical Analysis and ODEs
This thesis is devoted to some aspects of the theory of orthogonal polynomials, paying a special attention to the classical ones (Hermite, Laguerre, Bessel and Jacobi). The elements of a classical sequence are eigenfunctions of a second order linear differential operator with polynomial coefficients $\mathcal{L}$ known as the Bochner's operator. In an algebraic manner, a classical sequence is also caracterised through the so-called Hahn's property, which states that an orthogonal polynomial sequence is classical if and only if the sequence of its (normalised) derivatives is also orthogonal. \ud \ud In the present work we show that an orthogonal polynomial sequence is classical if and only if any of its polynomials fulfils a certain differential equation of order $2k$, for some positive integer $k$. We thoroughly reveal the structure of such differential equation and, for each classical family, we explicitly present the corresponding $2k$-order differential operator $\mathcal{L}_{k}$. When we consider $k=1$, we recover the Bochner's differential operator: $\mathcal{L}_{1} = \mathcal{L}$. On the other hand, as a consequence of Bochner's result, any element of a classical sequence must be an eigenfunction of a polynomial with constant coefficients in powers of $\mathcal{L}$. As a result of the introduction of the so-called $A$-modified Stirling numbers (where $A$ indicates a complex parameter), we are able to establish inverse relations between the powers of the Bochner operator $\mathcal{L}$ and $\mathcal{L}_{k}$. \ud \ud \ud Afterwards, we proceed to the quadratic decomposition of an Appell sequence. The four polynomial sequences obtained by this approach are also Appell sequences but with respect to another lowering differential operator, denoted $\mathcal{F}_{\varepsilon}$, where $\varepsilon$ is either 1 or -1. Thus, we introduce and develop the concept of Appell sequences with respect to the operator $\mathcal{F}_{\varepsilon}$ (where, more generally, $\varepsilon$ denotes a complex parameter): the $\mathcal{F}_{\varepsilon}$-Appell sequences. Subsequently, we seek to find all the orthogonal polynomial sequences that are also $\mathcal{F}_{\varepsilon}$-Appell, which are, indeed, the $\mathcal{F}_{\varepsilon}$-Appell sequences that satisfy Hahn's property respect to $\mathcal{F}_{\varepsilon}$. This latter consists of the Laguerre sequences of parameter $\varepsilon/2$, up to a linear change of variable. Inspired by this problem, we characterise all the $\mathcal{F}_{\varepsilon}$-classical sequences. \ud While ferreting out the all $\mathcal{F}_{\varepsilon}$-classical sequences, apart from the Laguerre sequence, we find certain Jacobi sequences (with two parameters). \ud The quadratic decomposition of Appell sequences with respect to other lowering operators is also considered and the results obtained are akin to the aforementioned ones attained in the analogous problem. \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 4h3 f2 − 2 − 2b1h3 = 0
    • [9] P. Barrucand and D. Dickinson. On cubic transformations of orthogonal polynomials. Proc. Amer. Math. Soc., 17:810-814, 1966.
    • [10] E. T. Bell. An algebra of sequences of functions with an application to the bernoullian functions. Trans. Amer. Math. Soc., 28:129-148, 1926.
    • [11] E. T. Bell. Certain invariant sequences of polynomials. Trans. Amer. Math. Soc., 31: 405-421, 1929.
    • [12] Y. Ben Cheikh and M. Gaied. Dunkl-Appell d-orthogonal orthogonal polynomials. Int. Transf. Spec. Funct., 18(7-8):581-597, 2007.
    • [13] Y. Ben Cheikh and M. Gaied. Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 187(1):105-114, 2007.
    • [14] Y. Ben Cheikh and H. M. Srivastava. Orthogonality of some polynomial sets via quasimonomiality. Appl. Math. Comput., 141(2-3):415-425, 2003.
    • [15] Youss`ef Ben Cheikh. On obtaining dual sequences via quasi-monomiality. Georgian Math. J., 9(3):413-422, 2002.
    • [16] Youss`ef Ben Cheikh. Some results on quasi-monomiality. Appl. Math. Comput., 141 (1):63-76, 2003. Advanced special functions and related topics in differential equations (Melfi, 2001).
    • [17] P. Blasiak, G. Dattoli, A. Horzela, and K. A. Penson. Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering. Phys. Lett. A, 352 (1-2):7-12, 2006. ISSN 0375-9601.
    • [18] S. Bochner. U¨ber Sturm-Liouvillesche Polynomsysteme. Math. Z., 29(1):730-736, 1929.
    • [19] Claude Brezinski. Generalizations of the Christoffel-Darboux identity for adjacent families of orthogonal polynomials. Appl. Numer. Math., 8(3):193-199, 1991.
    • [20] Claude Brezinski. Biorthogonality and its applications to numerical analysis, volume 156 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1992.
    • [21] Claude Brezinski. Pad´e-Type Approximation and General Orthogonal Polynomials, volume 50 of Monographs and Textbooks in Pure and Applied Mathematics. Birkh¨auserVerlag, Basel, 1980.
    • [22] L. Carlitz. The relationship of the Hermite to the Laguerre polynomials. Boll. U. M. I., 16:386-390, 1961.
    • [23] C. Cesarano. Monomiality principle and Legendre polynomials. In Advanced special functions and integration methods (Melfi, 2000), volume 2 of Proc. Melfi Sch. Adv. Top. Math. Phys., pages 83-95. Aracne, Rome, 2001.
    • [24] T. S. Chihara. On kernel polynomials and related systems. Boll. Un. Mat. Ital., 19: 451-459, 1964.
    • [25] T. S. Chihara. Indeterminate symmetric moment problems. J. Math. Anal. Appl., 85: 331-346, 1982.
    • [26] T. S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach Science Publishers, New York, 1978. Mathematics and its Applications, Vol. 13.
    • [27] T. S. Chihara and L. M. Chihara. A class of nonsymmetric orthogonal polynomials. J. Math. Anal. Appl., 126:275-291, 1987.
    • [28] W.-S. Chou, L. C. Hsu, and P. J.-S. Shiue. On a class of combinatorial sums involving generalized factorials. Int. J. Math. Math. Sci., pages Art. ID 12604, 9, 2007.
    • [29] E.B. Christoffel. U¨ber die Gaussiche quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math., 55:61-82, 1858.
    • [30] Louis Comtet. Advanced combinatorics. D. Reidel Publishing Co., Dordrecht, enlarged edition, 1974. The art of finite and infinite expansions.
    • [31] G. Dattoli. Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle. volume 1171 of Advanced Special Functions and Applications, pages 83-95, Rome, 2000. Aracne Editrice.
    • [32] G. Dattoli, H. M. Srivastava, and C. Cesarano. The laguerre and legendre polynomials from an operational point of view. Appl. Math. Comput., 124:117-127, 2001.
    • [33] G. Dattoli, B. Germano, M. R. Martinelli, Subuhi Khan, and P. E. Ricci. Legendre polynomials: Lie methods and monomiality. Math. Comput. Modelling, 47(9-10):887- 893, 2008. ISSN 0895-7177.
    • [34] G. Dattoli, D. Levi, and P. Winternitz. Heisenberg algebra, umbral calculus and orthogonal polynomials. J. Math. Phys., 49(5):053509, 19, 2008. ISSN 0022-2488.
    • [35] D. Dickinson and S. A. Warsi. On generalized Hermite polynomials and a problem of Carlitz. Boll. Un. Mat. Ital., 18:256-259, 1963.
    • [36] M. Domaratzki. Combinatorial interpretations of a generalization of the Genocchi numbers. J. Integer Seq., 7:11 Article 04.3.6, 2004. (electronic).
    • [37] D. Dumont and D. Foata. Une propri´et´e de sym´etrie des nombres de Genocchi. Bull. Soc. Math. France, 104:433-451, 1976.
    • [38] C. F. Dunkl. Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc., 311:167-183, 1989.
    • [39] R. Ehrenborg and E. Steingr´ımsson. Yet another triangle for the Genocchi numbers. European J. Combin., 21:593-600, 2001.
    • [40] W. N. Everitt and L. L. Littlejohn. Orthogonal polynomials and spectral theory: a survey. In Orthogonal polynomials and their applications (Erice, 1990), volume 9 of IMACS Ann. Comput. Appl. Math., pages 21-55. Baltzer, Basel, 1991.
    • [41] W. N. Everitt, K. H. Kwon, J. K. Lee, L. L. Littlejohn, and S. C. Williams. Selfadjoint operators generated from non-Lagrangian symmetric differential equations having orthogonal polynomial eigenfunctions. Rocky Mountain J. Math., 31(3):899-937, 2001.
    • [42] W. N. Everitt, K.H. Kwon, L. L. Littlejohn, and R. Wellman. Orthogonal polynomial solutions of linear ordinary differential equations. J. Comput. Appl. Math., 133:85-109, 2001.
    • [43] W. N. Everitt, L. L. Littlejohn, and V. Mari´c. On properties of the Legendre differential expression. Results Math., 42(1-2):42-68, 2002.
    • [44] W. N. Everitt, L. L. Littlejohn, and R. Wellman. Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression. J. Comput. Appl. Math., 148(1):213-238, 2002. On the occasion of the 65th birthday of Professor Michael Eastham.
    • [45] W. N. Everitt, K. H. Kwon, L. L. Littlejohn, R. Wellman, and G. J. Yoon. JacobiStirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. J. Comput. Appl. Math., 208(1):29-56, 2007.
    • [46] A. Genocchi. Intorno all'espressione generale de'numeri Bernoulliani. Ann. Sci. Mat. Fis., 3:395-405, 1985.
    • [47] J. S. Geronimo and W. Van Assche. Orthogonal polynomials on several intervals via a polynomial mapping. Trans. Amer. Math. Soc., 308:559-581, 1988.
    • [48] J. L. Geronimus. On polynomials orthogonal with respect to numerical sequences and on Hahn's theorem. Izv. Akad. Nauk, 250:215-228, 1940. (in russian).
    • [49] A. Ghressi and L. Kh´eriji. On the q-analogue of Dunkl operator and its Appell classical orthogonal polynomials. Int. J. Pure Appl. Math., 39(1):1-16, 2007.
    • [50] A. Ghressi and L. Kh´eriji. A new characterization of the generalised Hermite linear form. Bull. Belg. Math. Soc. Simon Stevin, 15:1-7, 2008.
    • [51] Abdallah Ghressi and Lotfi Kh´eriji. Orthogonal q-polynomials related to perturbed linear form. Appl. Math. E-Notes, 7:111-120 (electronic), 2007.
    • [52] Wolfgang Hahn. U¨ber die Jacobischen Polynome und zwei verwandte Polynomklassen. Math. Z., 39(1):634-638, 1935.
    • [53] Wolfgang Hahn. U¨ber h¨ohere Ableitungen von Orthogonalpolynomen. Math. Z., 43(1): 101, 1937.
    • [54] Wolfgang Hahn. U¨ber Orthogonalpolynomen. die q-Differenzengleichungen genu¨gen. Math. Nachr., 2:4-34, 1949.
    • [55] M.X. He and P. E. Ricci. Differential equations of Appell polynomials via factorization method. J. Comp. Appl. Math., 139:231-237, 2002.
    • [56] Leetsch C. Hsu and Peter Jau-Shyong Shiue. A unified approach to generalized Stirling numbers. Adv. in Appl. Math., 20(3):366-384, 1998.
    • [57] M. E.H. Ismail. Difference equations and quantized discriminants for q-orthogonal polynomials. Adv. Appl. Math.,, 30:562-589, 2003.
    • [58] Mourad E.H. Ismail. Remarks on “Differential equation of Appell polynomials...” (Letter to the Editor). J. Comp. Appl. Math.,, 154:243-245, 2003.
    • [59] L. Kh´eriji and P. Maroni. The Hq-classical orthogonal polynomials. Acta Appl. Math., 71(1):49-115, 2002.
    • [60] Vo-Khac Khoan. Distributions. Analyse de Fourier. Op´erateurs aux D´eriv´ees Partielles. Tome I. Librairie Vuibert, Paris, 1972.
    • [61] H. L. Krall. On derivatives of orthogonal polynomials. Bull. Amer. Math. Soc., 42(6): 423-428, 1936.
    • [62] H. L. Krall. On higher derivatives of orthogonal polynomials. Bull. Amer. Math. Soc., 42:867-870, 1936.
    • [63] H. L. Krall. On orthogonal polynomials satisfying a certain fourth order differential equation. Pennsylvania State College Studies,, 1940(6):24, 1940.
    • [64] H. L. Krall. Certain differential equations for Tchebycheff polynomials. Duke Math. J., 4(4):705-718, 1938.
    • [65] H.L. Krall and O. Frink. A new class of orthogonal polynomials: the Bessel polynomials. Trans. Amer. Math. Soc., 65:100-115, 1949.
    • [66] H.L. Krall and I.M. Sheffer. On pairs related orthogonal polynomial sets. Math. Zeitschr., 86:425-450, 1965.
    • [67] K. H. Kwon and G. J. Yoon. Generalized Hahn's theorem. J. Comput. Appl. Math., 116 (2):243-262, 2000.
    • [68] K. H. Kwon, L. L. Littlejohn, and B. H. Yoo. Characterizations of orthogonal polynomials satisfying differential equations. SIAM J. Math. Anal., 25(3):976-990, 1994.
    • [69] K. H. Kwon, L. L. Littlejohn, and B. H. Yoo. New characterizations of classical orthogonal polynomials. Indag. Math. (N.S.), 7(2):199-213, 1996.
    • [70] P. A. Lesky. Eigenwertprobleme mit Differentialgleichungen vierter Ordnung fu¨r die kontinuierlichen klassischen Orthogonalpolynome. O¨sterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 206:127-139 (1998), 1997.
    • [71] A. F. Loureiro and P. Maroni. Quadratic decomposition of Appell sequences. Expo. Math., 26:177-186, 2008.
    • [72] A. F. Loureiro, P. Maroni, and Z. da Rocha. The generalized Bochner condition about classical orthogonal polynomials revisited. J. Math. Anal. Appl., 322(2):645-667, 2006.
    • [73] Ana F. Loureiro. Caracterizac¸˜ao dos polino´mios ortogonais cl´assicos, 2003. URL http: //www.fc.up.pt/cmup/v2/frames/publications.htm.
    • [74] Ana F. Loureiro. New results on Bochner condition about classical orthogonal polynomials. submited, CMUP preprint 2008-14, 2008.
    • [75] Edouard Lucas. Th´eorie des nombres. Tome premier: Le calcul des nombres entiers, le calcul des nombres rationnels, la divisibilit´e arithm´etique. E´ditions Jacques Gabay, Paris, 1991. Reprint of the 1891 original [Gauthier-Villars et Fils, Impremeurs-Libraires, Paris].
    • [76] Aˆngela Macedo. Polino´mios Ortogonais Semi-Cl´assicos e Decomposic¸˜ao Quadr´atica Geral. Tese de doutoramento, Departamento de Matem´atica Aplicada, Faculdade de Ciˆencias, Universidade do Porto, 2004. (in portuguese).
    • [77] P. Maroni. Fonctions eul´eriennes. polynomes orthogonaux classiques. Tech. Ing. A, 154: 1-30, 1994.
    • [78] P. Maroni. Prol´egom`enes a l'´etude des polynˆomes orthogonaux semi-classiques. Ann. Mat. Pura Appl. (4), 149:165-184, 1987.
    • [79] P. Maroni. Sur la d´ecomposition quadratique d'une suite de polynˆomes orthogonaux. I. Riv. Mat. Pura Appl., (6):19-53, 1990.
    • [80] P. Maroni. Sur la d´ecomposition quadratique d'une suite de polynˆomes orthogonaux. II. Portugal. Math., 50(3):305-329, 1993.
    • [81] P. Maroni. Variations around classical orthogonal polynomials. Connected problems. In Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), volume 48, pages 133-155, 1993.
    • [82] P. Maroni. New results about orthogonality preserving maps. J. Korean Math. Soc., 42 (2):243-254, 2005.
    • [83] P. Maroni. Semi-classical character and finite-type relations between polynomial sequences. Applied Numerical Mathematics, 31(3):295-330, 1999.
    • [84] P. Maroni. Une th´eorie alg´ebrique des polynˆomes orthogonaux. Application aux polynˆomes orthogonaux semi-classiques. In Orthogonal polynomials and their applications (Erice, 1990), volume 9 of IMACS Ann. Comput. Appl. Math., pages 95-130. Baltzer, Basel, 1991.
    • [85] P. Maroni and Z. da Rocha. A new characterization of classical forms. Commun. Appl. Anal., 5(3):351-362, 2001.
    • [86] P. Maroni and M. Mejri. The I(q,ω) classical orthogonal polynomials. Appl. Numer. Math., 43(4):423-458, 2002. ISSN 0168-9274.
    • [87] Pascal Maroni. Le calcul des formes lin´eaires et les polynˆomes orthogonaux semiclassiques. In Orthogonal polynomials and their applications (Segovia, 1986), volume 1329 of Lecture Notes in Math., pages 279-290. Springer, Berlin, 1988.
    • [102] H.M. Terrill and E.M. Terrill. Tables of numbers related to the tangent coefficients. J. Franklin Inst., 239:64-67, 1945.
    • [104] G´erard Viennot. Interpr´etations combinatoires des nombres d'Euler et de Genocchi. In Seminar on Number Theory, 1981/1982, pages Exp. No. 11, 94. Univ. Bordeaux I, Talence, 1982.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

  • FCT | SFRH/BD/17569/2004

Cite this article