LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jarvis, Samuel Paul (2012)
Languages: English
Types: Unknown
Subjects:
Non-contact atomic force microscopy allows us to directly probe the interactions between atoms and molecules. When operated in UHV and at low temperatures, a host of experiments, uniquely possible with the technique, can be carried out. The AFM allows us to characterise the forces present on a surface, resolve the atomic structure of molecules, measure the force required to move an atom, and even directly measure molecular pair potentials. Generally speaking, it is the interaction between the outermost tip and surface atoms that we measure. Therefore, in each of these experiments, understanding, or controlling, the tip termination is essential. As NC-AFM experiments become increasingly sophisticated, the combination of experiment and simulation has become critical to understand, and guide the processes at play. In this thesis, I focus on semiconductor surfaces and investigate the role of tip structure in a variety of situations with both DFT simulations and NC-AFM experiments. The clean Si(100) surface consists of rows of dimers, which can be manipulated between two different states using an NC-AFM. In order to understand the manipulation process, detailed DFT and NEB simulations were conducted to examine the energy balance of ideal and defective surfaces, with or without the presence of an AFM tip. We show that an explanation can only be reached when we consider both the AFM tip and variations in the PES caused by surface defects. NC-AFM experiments were also conducted on Si(100):H. We find that on this surface we regularly cultivate chemically passivated, hydrogen-terminated, tip apices which lead to distinct inverted image contrasts in our AFM images. Following a thorough characterisation of the tip apex, we conduct preliminary experiments designed to investigate surface defect structures, and to chemically modify the tip termination. Detailed DFT simulations show that this type of tip engineering, however, critically depends on the larger tip structure, significantly complicating the chances of success. Additionally, we investigate the structure and stability of silicon tip apices using DFT. Even with relatively simple tip structures, we observe complex behaviours, such as tip-dependent dissipation and structural development. These processes provide interesting information regarding tip stability, and commonly observed experimental behaviour. We also model an experiment in which we functionalise the tip apex with a C60 molecule, revealing for the first time that submolecular resolution is possible in the attractive regime.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 198 203 [1] E. Drexler, Engines of Creation: The Coming Era of Nanotechnology (Anchor, 1987). [2] R. E. Smalley, Scienti c American 285, 76 (2001). [3] K. Eric Drexler et al., available at http:// www.imm.org/SciAmDebate2/smalley.html (2003).
    • [4] R. Baum, Chemical and Engineering News 81, 37 (2003). [5] G. Binnig, Applied Physics Letters 40, 178 (1982). [6] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Physical Review Letters 49, 57 (1982).
    • [7] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Physical Review Letters 50, 120 (1983).
    • [8] Gerd Binnig, Nobel lecture: Scanning tunneling microscopy from birth to adolescence, http://www.nobelprize.org/nobel prizes/physics/laureates/1986/binniglecture.html#, link available September 2012.
    • [9] D. M. Eigler, C. P. Lutz, and W. E. Rudge, Nature 352, 600 (1991). [10] D. M. Eigler and E. K. Schweizer, Nature 344, 524526 (1990). [11] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218 (1993). [12] J. J. Boland and J. S. Villarrubia, Science 248, 838 (1990). [13] T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, and C. Joachim, Science 271, 181 (1996).
    • [14] S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Physical Review Letters 85, 2777 (2000).
    • [15] J. Repp, G. Meyer, S. M. Stojkovi, A. Gourdon, and C. Joachim, Physical Review Letters 94, 026803 (2005).
    • [16] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan, Nature 483, 306 (2012).
    • [17] G. Binnig, C. F. Quate, and C. Gerber, Physical Review Letters 56, 930 (1986). [18] Y. Sugimoto et al., Physical Review B 81, 245322 (2010). [19] Y. Sugimoto et al., Nat Mater 4, 156159 (2005). [20] Y. Sugimoto et al., Science 322, 413417 (2008). [21] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, and A. J. Heinrich, Science 319, 10661069 (2008).
    • [22] N. Oyabu, Y. Sugimoto, M. Abe, s. Custance, and S. Morita, Nanotechnology 16, S112 (2005).
    • [23] N. Oyabu, s. Custance, I. Yi, Y. Sugawara, and S. Morita, Physical Review Letters 90, 176102 (2003).
    • [24] F. J. Giessibl, Science 267, 68 71 (1995). [25] F. J. Giessibl, Science 289, 422 (2000). [26] Y. Sugimoto et al., Nature 446, 6467 (2007). [27] Y. Sugimoto et al., Physical Review Letters 98, 106104 (2007). [28] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, Science 325, 1110 (2009). [29] J. Welker and F. J. Giessibl, Science 336, 444 (2012). [30] J. A. Stroscio and W. J. Kaiser, editors, Scanning Tunneling Microscopy, New edition ed. (Academic Press Inc, 1994).
    • [31] J. N. Israelachvili, Intermolecular And Surface Forces (Academic Press, 2010). [32] M. Guggisberg et al., Physical Review B 61, 11151 (2000). [33] Y. Li et al., Physical Review Letters 96 (2006). [34] L. Pizzagalli and A. Barato , Physical Review B 68, 115427 (2003). [35] M. A. Lantz, Science 291, 2580 (2001). [36] K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 3, 1502 (1985).
    • [37] J. Pethica and W. Oliver, Physica Scripta T19A, 61 (1987). [38] S. Kitamura and M. Iwatsuki, Japanese Journal of Applied Physics 34, L145 (1995). [39] T. R. Albrecht, P. Grutter, D. Horne, and D. Rugar, Journal of Applied Physics 69, 668 (1991).
    • [40] R. Perez, M. C. Payne, I. Stich, and K. Terakura, Physical Review Letters 78, 678681 (1997).
    • [41] R. Perez, I. Stich, M. C. Payne, and K. Terakura, Physical Review B 58, 1083510849 (1998).
    • [42] P. Dieska, I. Stich, and R. Perez, Nanotechnology 15, S55 (2004). [43] J. Tobik, I. Stich, R. Perez, and K. Terakura, Physical Review B 60, 11639 (1999). [44] P. Dieska, I. Stich, and R. Perez, Physical Review Letters 91, 216401 (2003). [45] A. S. Foster et al., Physical Review Letters 92, 036101 (2004). [46] A. S. Foster, C. Barth, A. L. Shluger, and M. Reichling, Physical Review Letters 86, 2373 (2001).
    • [47] Y. Sugawara, M. Ohta, H. Ueyama, and S. Morita, Science 270, 1646 (1995). [48] A. Schwarz, W. Allers, U. Schwarz, and R. Wiesendanger, Applied Surface Science 140, 293 (1999).
    • [49] M. Ondracek et al., Physical Review Letters 106, 176101 (2011). [50] A. Campbellov et al., Nanotechnology 22, 295710 (2011). [51] N. Oyabu et al., Physical Review Letters 96, 106101 (2006). [52] P. Pou et al., Nanotechnology 20, 264015 (2009). [53] R. Bechstein et al., Nanotechnology 20, 505703 (2009). [54] S. Ghasemi et al., Physical Review Letters 100 (2008). [55] L. Gross et al., Nature Chemistry 2, 821 (2010). [56] F. Mohn et al., Physical Review Letters 105, 266102 (2010). [57] L. Bartels et al., Physical Review Letters 80, 2004 (1998). [58] F. Giessibl, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 33, 3726 (1994).
    • [59] F. Giessibl and B. Trafas, Review of Scienti c Instruments 65, 1923 (1994). [60] J. E. Sader and S. P. Jarvis, Applied Physics Letters 84, 1801 (2004). [61] F. J. Giessibl, Physical Review B 56, 16010 (1997). [62] R. O. Jones and O. Gunnarsson, Reviews of Modern Physics 61, 689 (1989). [77] L. Kantorovich, Quantum Theory of the Solid State: An Introductionn (Springer, 2004).
    • [78] P. Ordejon, E. Artacho, and J. M. Soler, Physical Review B 53, 10441 (1996).
    • [79] L. Kantorovich and C. Hobbs, Physical Review B 73, 245420 (2006).
    • [80] R. E. Schlier and H. E. Farnsworth, The Journal of Chemical Physics 30, 917 (1959). [81] D. J. Chadi, Physical Review Letters 43, 43 (1979).
    • [82] K. Inoue, Y. Morikawa, K. Terakura, and M. Nakayama, Physical Review B 49, 14774 (1994).
    • [83] J. P. LaFemina, Surface Science Reports 16, 137260 (1992).
    • [84] R. M. Tromp, R. J. Hamers, and J. E. Demuth, Physical Review Letters 55, 1303 (1985).
    • [85] R. Wolkow, Physical Review Letters 68, 2636 (1992).
    • [86] C.-C. Fu, M. Weissmann, and A. Sal, Surface Science 494, 119 (2001).
    • [87] J. Ihm, D. H. Lee, J. D. Joannopoulos, and J. J. Xiong, Physical Review Letters 51, 1872 (1983).
    • [88] T. Tabata, T. Aruga, and Y. Murata, Surface Science 179, L63 (1987).
    • [89] K. Hata, Y. Sainoo, and H. Shigekawa, Physical Review Letters 86, 3084 (2001).
    • [90] R. J. Hamers, R. M. Tromp, and J. E. Demuth, Physical Review B 34, 5343 (1986). [91] Y. Kondo, T. Amakusa, M. Iwatsuki, and H. Tokumoto, Surface Science 453, L318 (2000).
    • [92] T. Yokoyama and K. Takayanagi, Physical Review B 61, R5078 (2000).
    • [93] T. Mitsui and K. Takayanagi, Physical Review B 62, R16251 (2000).
    • [94] M. Matsumoto, K. Fukutani, and T. Okano, Physical review letters 90, 106103 (2003). [95] M. Ono et al., Physical Review B 67 (2003).
    • [96] K. Sagisaka, D. Fujita, and G. Kido, Physical Review Letters 91, 146103 (2003).
    • [97] K. Sagisaka and D. Fujita, Physical Review B 71, 245319 (2005).
    • [98] K. Sagisaka, D. Fujita, G. Kido, and N. Koguchi, Surface Science 566, Part 2, 767 (2004).
    • [99] K. Yokoyama, T. Ochi, A. Yoshimoto, Y. Sugawara, and S. Morita, Japanese Journal of Applied Physics Part 2-Letters 39, L113 (2000).
    • [100] S. Morita and Y. Sugawara, Japanese Journal of Applied Physics 41, 4857 (2002). [101] D. Sawada et al., Japanese Journal of Applied Physics 47, 6085 (2008).
    • [102] T. Uozumi, Y. Tomiyoshi, N. Suehira, Y. Sugawara, and S. Morita, Applied Surface Science 188, 279 (2002).
    • [103] J. Wang, T. A. Arias, and J. D. Joannopoulos, Physical Review B 47, 10497 (1993). [104] Y. Sainoo et al., Japanese Journal of Applied Physics 38, 3833 (1999). [105] A. Sweetman, S. Gangopadhyay, R. Danza, N. Berdunov, and P. Moriarty, Applied Physics Letters 95, 063112 (2009).
    • [106] J. Boland, Advances in Physics 42, 129 (1993). [107] Y. J. Chabal and K. Raghavachari, Physical Review Letters 54, 1055 (1985). [108] J. J. Boland, Physical Review Letters 65, 3325 (1990). [109] T. Sakurai and H. D. Hagstrum, Physical Review B 14, 1593 (1976). [110] J. J. Boland, Surface Science 261, 17 (1992). [111] E. J. Buehler and J. J. Boland, Surface Science 425, L363 (1999). [112] A. Bellec, D. Riedel, G. Dujardin, N. Rompotis, and L. N. Kantorovich, Physical Review B 78, 165302 (2008).
    • [113] M. Fujimori, S. Heike, Y. Suwa, and T. Hashizume, Japanese Journal of Applied Physics 42, L1387 (2003).
    • [114] J. L. OBrien et al., Physical Review B 64, 161401 (2001). [115] A. Mayne, D. Riedel, G. Comtet, and G. Dujardin, Progress in Surface Science 81, 151 (2006).
    • [116] G. P. Lopinski, D. D. M. Wayner, and R. A. Wolkow, Nature 406, 48 (2000). [117] S. R. Scho eld et al., Physical Review Letters 91, 136104 (2003). [118] B. Weber et al., Science 335, 64 (2012). [119] M. Fuechsle et al., Nature Nanotechnology 7, 242 (2012). [120] X. Tong and R. A. Wolkow, Surface Science 600, L199 (2006). [121] J. L. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow, The Journal of Chemical Physics 134, 064712 (2011).
    • [122] L. Livadaru, J. Pitters, M. Taucer, and R. A. Wolkow, Physical Review B 84, 205416 (2011).
    • [123] J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Applied Physics Letters 64, 2010 (1994).
    • [124] J. J. Boland, Surface Science 244, 1 (1991). [125] R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Physical Review Letters 65, 1917 (1990).
    • [126] T. C. Shen et al., Science 268, 1590 (1995). [127] S. Ciraci, R. Butz, E. M. Oellig, and H. Wagner, Physical Review B 30, 711 (1984). [128] L. Soukiassian, A. J. Mayne, M. Carbone, and G. Dujardin, Surface Science 528, 121 (2003).
    • [129] L. Soukiassian, A. J. Mayne, M. Carbone, and G. Dujardin, Physical Review B 68, 035303 (2003).
    • [130] K. Stokbro et al., Physical Review Letters 80, 2618 (1998). [131] T. Hitosugi et al., Physical Review Letters 82, 4034 (1999). [136] J. S. Villarrubia and J. J. Boland, Physical Review Letters 63, 306 (1989). [137] S. D. Solares et al., Langmuir 21, 12404 (2005). [138] K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, Journal of Vacuum Science & Technology A 18, 1933 (2000).
    • [139] L. Sanchez, R. Otero, J. M. Gallego, R. Miranda, and N. Martin, Chemical Reviews 109, 2081 (2009).
    • [140] D. Bonifazi, O. Enger, and F. Diederich, Chemical Society Reviews 36, 390 (2007). [141] P. J. Moriarty, Surface Science Reports 65, 175 (2010). [142] S. Gangopadhyay et al., Surface Science 603, 2896 (2009), ei. [143] R. Rurali, R. Cuadrado, and J. I. Cerd, Physical Review B 81, 075419 (2010). [144] P. H. Beton, A. W. Dunn, and P. Moriarty, Applied Physics Letters 67, 1075 (1995). [145] P. Beton, A. Dunn, and P. Moriarty, Surface Science 361362, 878 (1996). [146] P. Moriarty, Y. Ma, M. Upward, and P. Beton, Surface Science 407, 27 (1998). [147] D. Keeling, M. Humphry, P. Moriarty, and P. Beton, Chemical Physics Letters 366, 300 (2002).
    • [148] N. Martsinovich and L. Kantorovich, Nanotechnology 19, 235702 (2008). [149] N. Martsinovich and L. Kantorovich, Physical Review B 77, 205412 (2008). [150] G. Schull, T. Frederiksen, M. Brandbyge, and R. Berndt, Physical Review Letters 103, 206803 (2009).
    • [151] G. Schull, T. Frederiksen, A. Arnau, D. Sanchez-Portal, and R. Berndt, Nature Nanotechnology 6, 23 (2011).
    • [152] R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, and E. Meyer, ACS Nano 5, 6349 (2011). [153] K. Kobayashi, H. Yamada, T. Horiuchi, and K. Matsushige, Applied Surface Science 140, 281 (1999).
    • [154] K. Kobayashi, H. Yamada, T. Horiuchi, and K. Matsushige, Applied Surface Science 157, 228 (2000).
    • [155] J. M. Mativetsky, S. A. Burke, R. Ho mann, Y. Sun, and P. Grutter, Nanotechnology 15, S40 (2004).
    • [156] F. Loske, P. Rahe, and A. Khnle, Nanotechnology 20, 264010 (2009). [158] C. Hobbs and L. Kantorovich, Surface Science 600, 551 (2006). [165] G. H. Simon, M. Heyde, and H.-P. Rust, Nanotechnology 18, 255503 (2007). [166] F. J. Giessibl and H. Bielefeldt, Physical Review B 61, 9968 (2000). [167] Z. Majzik et al., Beilstein Journal of Nanotechnology 3, 249 (2012). [168] G. Meyer, Review of Scienti c Instruments 67, 2960 (1996). [169] F. J. Giessibl, Applied Physics Letters 76, 1470 (2000). [170] A. Sweetman, S. Jarvis, R. Danza, and P. Moriarty, Beilstein Journal of Nanotechnology 3, 25 (2012).
    • [171] G. S. Hwang, Surface Science 465, L789 (2000). [172] S. Yoshida et al., Japanese Journal of Applied Physics 41, 5017 (2002). [173] Y. Naitoh, Y. J. Li, H. Nomura, M. Kageshima, and Y. Sugawara, Journal of the Physical Society of Japan 79, 013601 (2010).
    • [182] A. Weymouth, T. Wutscher, J. Welker, T. Hofmann, and F. Giessibl, Physical Review Letters 106 (2011).
    • [183] T. Wutscher, A. J. Weymouth, and F. J. Giessibl, Physical Review B 85, 195426 (2012).
    • [184] M. Z. Baykara, T. C. Schwendemann, E. I. Altman, and U. D. Schwarz, Advanced Materials 22, 2838 (2010).
    • [185] N. Miura and M. Tsukada, Japanese Journal of Applied Physics 41, 306 (2002). [186] Y. Sugimoto et al., Physical Review B 73, 205329 (2006). [187] Y. Naitoh, Y. Kinoshita, Y. Jun Li, M. Kageshima, and Y. Sugawara, Nanotechnology 20, 264011 (2009).
    • [188] F. J. Giessibl, Reviews of Modern Physics 75, 949 (2003). [189] S. Hembacher, F. J. Giessibl, and J. Mannhart, Science 305, 380 (2004). [190] C. Chiutu et al., Physical Review Letters 108, 268302 (2012). [191] Z. Sun, M. P. Boneschanscher, I. Swart, D. Vanmaekelbergh, and P. Liljeroth, Physical Review Letters 106, 046104 (2011).
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    42
    42%
  • No similar publications.

Share - Bookmark

Cite this article