Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T.J.; Grant, D.; Palumbo, O.; Paolone, A.; Cantelli, R. (2016)
Publisher: Springer Verlag
Languages: English
Types: Article
Subjects: Materials Science (all); Chemistry (all)
Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD *31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100-xZrx alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. N. E Amadeo, M. A. Laborde, Int. J. Hydrogen Energy, 20 12, 949-956 (1995).
    • 2. S.-M. Kim, D. Chandra, N. Pal, M. Dolan, W-M Chien , J. Lamb, S. Paglieri and T. Flanagan, Int. J. Hydrogen Energy 37, 3904-3913 (2012).
    • 3. C. Nishimura, M. Komaki, S. Hwang and M. Amano, J. Alloys Compd. 330-332, 902-906 (2002).
    • 4. H. Hoang, H. Tong, F. Gielens, H. Jansen and M. Elwenspoek, Mater. Lett.58, 525-528 (2004).
    • 5. M. Nishikawa, S. Shiraishi, Y. Kawamura and T. Takeishi, J. Nuclear. Sci. Technol, T33, 740-780 (1996).
    • 6. Y. Guo, G. Lu, Y. Wang and R. Wang, Sep. Purif. Technol. 32, 271-279 (2003).
    • 7. K. Yamakawa, M. Ege, B. Ludescher, M. Hirscher, H. Kronmuller, Journal of Alloys and Compounds 321 17- 23 (2001)
    • 8. K. Yamakawa, M. Ege, M. Hirscher, B. Ludescher, H. Kronmuller, Journal of Alloys and Compounds 393, 5-10 (2005)
    • 9. K. Yamakawa, M. Ege, B. Ludescher, M. Hirscher, Journal of Alloys and Compounds 352, 57-59 (2003)
    • 10. S. Paglieri and J.D. Way, Sep. Purif. Methods 31, 1-169 (2002).
    • 11. S. A. Steward, Review of hydrogen isotope permeability through metals. US National Laboratory Report 1983:UCRL-53441.
    • 12. W. Klement, R.H Willens, and P. Duwez, Nature 187, 869 (1960).
    • 13. A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. JIM 33, 965 (1989).
    • 14. A. Inoue, Acta Mater. 48, 279 (2000).
    • 15. M. Baricco and M. Palumbo, Advanced Engineering Materials, Special Issue-bulk metallic glasses, Volume 9, Issue 6, pages 454-467, June, 2007
    • 16. J. W. Phair and R. Donelson, Ind. Eng. Chem. Res. 45, 5657-5674 (2006).
    • 17. J. W. Phair and S.P.S Badwal, Sci. Technol. Adv. Mater. 7, 792-805 (2006).
    • 18. M. D. Dolan, N. C. Dave, A. Y. Ilyushechkin, L. D. Morpeth and K. G. McLennan, J. Membr. Sci. 285, 30- 55 (2006).
    • 19. N.W. Ockwig, T.M Nenoff, Chem. Rev. 107, 4078-4110 (2007).
    • 20. F.H.M. Spit, J.W. Drijver, W.C. Turkenburg, S. Radelaar, G. Bambakidis (Ed.), Metal Hydrides, Plenum, New York, 345-360 (1981).
    • 21. K. Aoki, A. Horata, T. Masumoto: Proc. 4th Int. Conf. on Rapidly Quenched Metals 1649 (1981).
    • 22. R.W Lin, H. H. Johnson, J. Non-Cryst. Solids 51, 45-56 (1983).
    • 23. G. Adachi, H. Nagai, J. Shiokawa, J. Less-Common Met. 149, 185-191 (1989).
    • 24. J. O. Stroem-Olsen, Y. Zhao, D. H Ryan, Y. Huai, R.W. Cochrane, J. Less-Common Met. 172-174, 922- 92728 (1991).
    • 25. O. Yoshinari, R. Kirchheim, J. Less-Common Met. 172-174, 890-898 (1991).
    • 26. S. L. I Chan, C. I. Chiang, J. Alloy. Compd. 253-254, 370- 373 (1997).
    • 27. S. Hara, K. Sakaki, N. Itoh, H-M. Kimura, K. Asami, A. Inoue, J. Membr. Sci. 164, 289-294 (2000).
    • 72. M. Fukuhara, H. Yoshida, K. Koyama, A. Inoue, Y. Miura, J. Appl. Phys. 107, 03370 1-5 (2010) .
    • 73. M. Fukuhara, H. Yoshida, A. Inoue, N. Fujima, Intermetallic 80, 1864-1866 (2010).
    • 74. D. Chandra, Behavior of Ni-Nb-Zr Alloy Gas Permeation Membrane Ribbons at Extreme Pressure Condition, US DOE Contract No. DE-NA0002004 May 13, (2014).
    • 75. D. Chandra, Behavior of Ni-Nb-Zr Alloy Gas Permeation Membrane Ribbons at Extreme Pressure Condition, USDOE Contract No. DE-NA0002004 August 18, (2015).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article