Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pen, Y.; Zhang, Z.J.; Morales-Garcia, A.L.; Mears, M.; Tarmey, D.S.; Edyvean, R.G.; Banwart, S.A.; Geoghegan, M. (2015)
Publisher: Elsevier
Journal: Biochimica et Biophysica Acta (BBA) - Biomembranes
Languages: English
Types: Article
Subjects: Cell Biology, Biochemistry, Biophysics
The mechanical properties of Rhodococcus RC291 were measured using force spectroscopy equipped with a bacterial cell probe. Rhodococcal cells in the late growth stage of development were found to have greater adhesion to a silicon oxide surface than those in the early growth stage. This is because there are more extracellular polymeric substances (EPS) that contain nonspecific binding sites available on the cells of late growth stage. It is found that EPS in the late exponential phase are less densely bound but consist of chains able to extend further into their local environment, while the denser EPS at the late stationary phase act more to sheath the cell. Contraction and extension of the EPS could change the density of the binding sites, and therefore affect the magnitude of the adhesion force between the EPS and the silicon oxide surface. By treating rhodococcal EPS as a surface-grafted polyelectrolyte layer and using scaling theory, the interaction between EPS and a solid substrate was modelled for the cell approaching the surface which revealed that EPS possess a large capacity to store charge. Changing the pH of the surrounding medium acts to change the conformation of EPS chains.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Alexander, Biodegradation and Bioremediation, 2nd ed. Academic Press, San Diego, 1999.
    • [2] N.A. Sorkhoh, M.A. Ghannoum, A.S. Ibrahim, R.J. Stretton, S.S. Radwan, Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait, Environ. Pollut. 65 (1990) 1-17.
    • [3] A.K. Bej, D. Saul, J. Aislabie, Cold-tolerant alkane-degrading Rhodococcus species from Antarctica, Polar Biol. 23 (2000) 100-105.
    • [4] D. Dean-Ross, J.D. Moody, J.P. Freeman, D.R. Doerge, C.E. Cerniglia, Metabolism of anthracene by a Rhodococcus species, FEMS Microbiol. Lett. 204 (2001) 205-211.
    • [5] H. Taki, K. Syutsubo, R.G. Mattison, S. Harayama, Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils, Biodegradation 18 (2007) 17-26.
    • [6] I.B. Ivshina, T.A. Peshkur, V.P. Korobov, Efficient uptake of cesium ions by Rhodococcus cells, Microbiology 71 (2002) 357-361.
    • [7] W.R. Finnerty, The biology and genetics of the genus Rhodococcus, Annu. Rev. Microbiol. 46 (1992) 193-218.
    • [8] S.A. Denome, E.S. Olson, K.D. Young, Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8, Appl. Environ. Microbiol. 59 (1993) 2837-2843.
    • [9] J.L.M. Rodrigues, C.A. Kachel, M.R. Aiello, J.F. Quensen, O.V. Maltseva, T.V. Tsoi, J.M. Tiedje, Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb), Appl. Environ. Microbiol. 72 (2006) 2476-2482.
    • [10] H. Aoshima, T. Hirase, T. Tada, N. Ichimura, H. Kato, Y. Nagata, T. Myoenzono, M. Taguchi, K. Takahashi, T. Hukuzumi, T. Aoki, S. Makino, K. Hagiya, H. Ishiwata, Safety evaluation of a heavy oil-degrading bacterium, Rhodococcus erythropolis C2, J. Toxicol. Sci. 32 (2007) 69-78.
    • [11] D. Kitamoto, H. Isoda, T. Nakahara, Functions and potential applications of glycolipid biosurfactants: from energy-saving materials to gene delivery carriers, J. Biosci. Bioeng. 94 (2002) 187-201.
    • [12] M.S. Kuyukina, I.B. Ivshina, S.V. Gein, T.A. Baeva, V.A. Chereshnev, In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber, Bull. Exp. Biol. Med. 144 (2007) 326-330.
    • [13] S. Lang, J.C. Philp, Surface-active lipids in Rhodococci, A. Van. Leeuw, J. Microb. 74 (1998) 59-70.
    • [14] T.R. Neu, J.R. Lawrence, In situ characterization of extracellular polymetric substances (EPS) in biofilm systems, in: J. Wingender, T.R. Neu, H.C. Flemming (Eds.), Microbial Extracellular Polymetric Substances: Characterization, Structure and Function, Springer, Berlin, 1999.
    • [15] A.W. Decho, G.R. Lopez, Exopolymer microenvironments of microbial flora: multiple and interactive effects on trophic relationships, Limnol. Oceanogr. 38 (1993) 1633-1645.
    • [16] M. Hoffman, A.W. Decho, Extracellular enzymes within microbial biofilms and the role of the extracellular polymer matrix, in: J. Wingender, T.R. Neu, H.C. Flemming (Eds.), Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, Springer, Berlin, 1999.
    • [17] W.B. Dade, J.D. Davis, P.D. Nichols, A.R.M. Nowell, D. Thistle, M.B. Trexler, D.C. White, Effects of bacterial exopolymer adhesion on the entrainment of sand, Geomicrobiol J. 8 (1990) 1-16.
    • [18] M. Geoghegan, J.S. Andrews, C.A. Biggs, K.E. Eboigbodin, D.R. Elliott, S. Rolfe, J. Scholes, J.J. Ojeda, M.E. Romero-Gonzalez, R.G.J. Edyvean, L. Swanson, R. Rutkaite, R. Fernando, Y. Pen, Z. Zhang, S.A. Banwart, The polymer physics and chemistry of microbial cell attachment and adhesion, Faraday Discuss. 139 (2008) 85-103.
    • [19] J.J. Ojeda, M.E. Romero-González, R.T. Bachmann, R.G.J. Edyvean, S.A. Banwart, Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations, Langmuir 24 (2008) 4032-4040.
    • [20] Z. Zhang, Y. Pen, R.G. Edyvean, S.A. Banwart, R.M. Dalgliesh, M. Geoghegan, Adhesive and conformational behaviour of mycolic acid monolayers, BBA Biomembr. 1798 (2010) 1829-1839.
    • [21] K. Kato, E. Uchida, E.-T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains, Prog. Polym. Sci. 28 (2003) 209-259.
    • [22] E.P.K. Currie, W. Norde, M.A.C. Stuart, Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties, Adv. Colloid Interf. Sci. 100-102 (2003) 205-265.
    • [23] R.F. Considine, C.J. Drummond, D.R. Dixon, Force of interaction between a biocolloid and an inorganic oxide: complexity of surface deformation, roughness, and brushlike behavior, Langmuir 17 (2001) 6325-6335.
    • [24] T.A. Camesano, B.E. Logan, Probing bacterial electrosteric interactions using atomic force microscopy, Environ. Sci. Technol. 34 (2000) 3354-3362.
    • [25] F. Gaboriaud, Y.F. Dufrêne, Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces, Colloids Surf. B 54 (2007) 10-19.
    • [26] H.C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol. 8 (2010) 623-633.
    • [27] F. Oosawa, Polyelectrolytes, 1st ed. Marcel Dekker, New York, 1971.
    • [28] H.J. Butt, M. Kappl, Surface forces in polymer solutions and melts, Surface and Interfacial Forces, Wiley-VCH, Weinheim, 2010.
    • [29] G. Hadziioannou, S. Patel, S. Granick, M. Tirrell, Forces between surfaces of block copolymers adsorbed on mica, J. Am. Chem. Soc. 108 (1986) 2869-2876.
    • [30] S. Hayashi, T. Abe, N. Higashi, M. Niwa, K. Kurihara, Polyelectrolyte brush layers studied by surface forces measurement: dependence on pH and salt concentrations and scaling, Langmuir 18 (2002) 3932-3944.
    • [31] S. Block, C.A. Helm, Measurement of long-ranged steric forces between polyelectrolyte layers physisorbed from 1 M NaCl, Phys. Rev. E. 76 (2007) 030801.
    • [32] S. Biggs, Steric and bridging forces between surfaces bearing adsorbed polymer: an atomic force microscopy study, Langmuir 11 (1995) 156-162.
    • [33] A. Jahn, P.H. Nielsen, Extraction of extracellular polymeric substances (EPS) from biofilms using a cation exchange resin, Water Sci. Technol. 32 (1995) 157-164.
    • [34] M.F. Dignac, V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, P. Scribe, Chemical description of extracellular polymers: implication on activated sludge floc structure, Water Sci. Technol. 38 (1998) 45-53.
    • [35] B.P. Frank, G. Belfort, Intermolecular forces between extracellular polysaccharides measured using the atomic force microscope, Langmuir 13 (1997) 6234-6240.
    • [36] G.A. Burks, S.B. Velegol, E. Paramonova, B.E. Lindenmuth, J.D. Feick, B.E. Logan, Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition, Langmuir 19 (2003) 2366-2371.
    • [37] V. Vadillo-Rodríguez, J.R. Dutcher, Viscoelasticity of the bacterial cell envelope, Soft Matter 7 (2011) 4101-4110.
    • [38] E.S. Taylor, S.K. Lower, Thickness and surface density of extracellular polymers on Acidithiobacillus ferrooxidans, Appl. Environ. Microbiol. 74 (2008) 309-311.
    • [39] N.I. Abu-Lail, T.A. Camesano, The effect of solvent polarity on the molecular surface properties and adhesion on Escherichia coli, Colloids Surf. B 51 (2006) 62-70.
    • [40] J. Strauss, N.A. Burnham, T.A. Camesano, Atomic force microscopy study of the role of LPS O-antigen on adhesion of E. coli, J. Mol. Recognit. 22 (2009) 347-355.
    • [41] H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: technique, interpretation and applications, Surf. Sci. Rep. 59 (2005) 1-152.
    • [42] J.S. Andrews, S.A. Rolfe, W.E. Huang, J.D. Scholes, S.A. Banwart, Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species, Environ. Microbiol. 12 (2010) 2496-2507.
    • [43] G. Fleminger, Y. Shabtai, Direct and rapid analysis of the adhesion of bacteria to solid surface: interaction of fluorescently labeled Rhodococcus strain GIN-1 (NCIMB 40340) cells with titanium-rich particles, Appl. Environ. Microbiol. 61 (1995) 4357-4361.
    • [44] M. Kobayashi, N. Yanaka, T. Nagasawa, H. Yamada, Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles, J. Bacteriol. 172 (1990) 4807-4815.
    • [45] R.S. Pembrey, K.C. Marshall, R.P. Schneider, Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl. Environ. Microbiol. 65 (1999) 2877-2894.
    • [46] K.E. Bremmell, A. Evans, C.A. Prestidge, Deformation and nano-rheology of red blood cells: an AFM investigation, Colloids Surf. B 50 (2006) 43-48.
    • [47] V.J. Morris, A.R. Kirby, A.P. Gunning, Atomic Force Microscopy for Biologists, 2nd ed. Imperial College Press, London, 2010.
    • [48] S.K. Lower, C.J. Tadanier, M.F. Hochella, Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy, Geochim. Cosmochim. Acta 64 (2000) 3133-3139.
    • [49] S.K. Lower, M.F. Hochella Jr., T.J. Beveridge, Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH, Science 292 (2001) 1360-1363.
    • [50] J.L. Hutter, J. Bechhoefer, Calibration of atomic force microscope tips, Rev. Sci. Instrum. 64 (1993) 1868-1873.
    • [51] R.F. Considine, D.R. Dixon, C.J. Drummond, Laterally-resolved force microscopy of biological microspheres-oocysts of Cryptosporidium parvum, Langmuir 16 (2000) 1323-1330.
    • [52] H.C. van der Mei, H.J. Busscher, R. Bos, J. de Vries, C.J.P. Boonaert, Y.F. Dufrêne, Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain, Biophys. J. 78 (2000) 2668-2674.
    • [53] V. Vadillo-Rodríguez, H.J. Busscher, W. Norde, J. de Vries, H.C. van der Mei, On relations between microscopic and macroscopic physicochemical properties of bacterial cell surfaces: an AFM study on Streptococcus mitis strains, Langmuir 19 (2003) 2372-2377.
    • [54] W.A. Ducker, Z. Xu, J.N. Israelachvili, Measurements of hydrophobic and DLVO forces in bubble-surface interactions in aqueous solutions, Langmuir 10 (1994) 3279-3289.
    • [55] P. Pincus, Colloid stabilization with grafted polyelectrolytes, Macromolecules 24 (1991) 2912-2919.
    • [56] J. Rühe, M. Ballauff, M. Biesalski, P. Dziezok, F. Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R.R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, H.N. Zhang, Polyelectrolyte brushes, in: M. Schmidt (Ed.), Polyelectrolytes with Defined Molecular Architecture I, Springer, Berlin, 2004.
    • [57] H.J. Butt, M. Kappl, Surface and Interfacial Forces, 1st ed. Wiley-VCH, Weinheim, 2010.
    • [58] F. Ahimou, F.A. Denis, A. Touhami, Y.F. Dufrêne, Probing microbial cell surface charges by atomic force microscopy, Langmuir 18 (2002) 9937-9941.
    • [59] T.A. Camesano, Y.T. Liu, M. Datta, Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques, Adv. Water Resour. 30 (2007) 1470-1491.
    • [60] J. Nigou, M. Gilleron, G. Puzo, Lipoarabinomannans: from structure to biosynthesis, Biochimie 85 (2003) 153-166.
    • [61] M. Gilleron, N.J. Garton, J. Nigou, T. Brando, G. Puzo, I.C. Sutcliffe, Characterization of a truncated lipoarabinomannan from the Actinomycete Turicella otitidis, J. Bacteriol. 187 (2005) 854-861.
    • [62] J. Nigou, T. Vasselon, A. Ray, P. Constant, M. Gilleron, G.S. Besra, I. Sutcliffe, G. Tiraby, G. Puzo, Mannan chain length controls lipoglycans signaling via and binding to TLR2, J. Immunol. 180 (2008) 6696-6702.
    • [63] I.C. Sutcliffe, A.K. Brown, L.G. Dover, The Rhodococcal cell envelope: composition, organisation and biosynthesis, in: H.M. Alvarez (Ed.), Biology of Rhodococcus, Springer, Heidelberg, 2010.
    • [64] S.W. Hunter, H. Gaylord, P.J. Brennan, Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the Leprosy and Tubercle bacilli, J. Biol. Chem. 261 (1986) 12345-12351.
    • [65] B. Bendinger, H.H.M. Rijnaarts, K. Altendorf, A.J.B. Zehnder, Physicochemical cellsurface and adhesive properties of coryneform bacteria related to the presence and chain-length of mycolic acids, Appl. Environ. Microbiol. 59 (1993) 3973-3977.
    • [66] M.J. Vacheron, M. Guinand, G. Michel, J.M. Ghuysen, Structural investigations on cell walls of Nocardia sp.: the wall lipid and peptidoglycan moieties of Nocardia kirovani, Eur. J. Biochem. 29 (1972) 156-166.
    • [67] M. Arnoldi, M. Fritz, E. Bäuerlein, M. Radmacher, E. Sackmann, A. Boulbitch, Bacterial turgor pressure can be measured by atomic force microscopy, Phys. Rev. E. 62 (2000) 1034-1044.
    • [68] M. Arnoldi, C.M. Kacher, E. Bäuerlein, M. Radmacher, M. Fritz, Elastic properties of the cell wall of Magnetospirillum gryphiswaldense investigated by atomic force microscopy, Appl. Phys. A Mater. 66 (1998) S613-S617.
    • [69] X. Yao, J. Walter, S. Burke, S. Stewart, M.H. Jericho, D. Pink, R. Hunter, T.J. Beveridge, Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria, Colloids Surf. B 23 (2002) 213-230.
    • [70] M. Geoghegan, L. Ruiz-Pérez, C.C. Dang, A.J. Parnell, S.J. Martin, J.R. Howse, R.A.L. Jones, R. Golestanian, P.D. Topham, C.J. Crook, A.J. Ryan, D.S. Sivia, J.R.P. Webster, A. Menelle, The pH-induced swelling and collapse of a polybase brush synthesized by atom transfer radical polymerization, Soft Matter 2 (2006) 1076-1080.
    • [71] S. Rauch, P. Uhlmann, K.-J. Eichhorn, In situ spectroscopic ellipsometry of pHresponsive polymer brushes on gold substrates, Anal. Bioanal. Chem. 405 (2013) 9061-9069.
    • [72] T.R. Neu, T. Dengler, B. Jann, K. Poralla, Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain, J. Gen. Microbiol. 138 (1992) 2531-2537.
    • [73] I.W. Sutherland, Microbial exopolysaccharides-structural subtleties and their consequences, Pure Appl. Chem. 69 (1997) 1911-1917.
    • [74] A.F. Kennedy, I.W. Sutherland, Analysis of bacterial exopolysaccharides, Biotechnol. Appl. Biochem. 9 (1987) 12-19.
    • [75] T.R. Neu, Significance of bacterial surface-active compounds in interaction of bacteria with interfaces, Microbiol. Rev. 60 (1996) 151-166.
    • [76] L.M. Mayer, L.L. Schick, T. Sawyer, C.J. Plante, P.A. Jumars, R.L. Self, Bioavailable amino acids in sediments: a biomimetic, kinetics-based approach, Limnol. Oceanogr. 40 (1995) 511-520.
    • [77] P.E. Kepkay, Particle aggregation and the biological reactivity of colloids, Mar. Ecol. Prog. Ser. 109 (1994) 293-304.
    • [78] D.G. Allison, I.W. Sutherland, The role of exopolysaccharides in adhesion of freshwater bacteria, J. Gen. Microbiol. 133 (1987) 1319-1327.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article