LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bishko, G.; McLeish, T.C.B.; Harlen, O.G.; Larson, R.G. (1997)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Condensed Matter::Soft Condensed Matter
The nonlinear rheological constitutive equation of a class of multiply branched polymers is derived using the tube model. The molecular architecture may be thought of as two q-arm stars connected by a polymeric ''crossbar.'' The dynamics lead to a novel integrodifferential equation which exhibits extreme strain hardening in extension and strain softening in shear. Calculations of flow through a contraction predict that the degree of long-chain branching controls the growth of corner vortices, in agreement with experiments on commercial branched polymers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).
    • [2] M. Rubinstein, E. Helfand, and D. S. Pearson, Macromolecules 20, 822 - 829 (1987).
    • [3] M. Rubinstein, Phys. Rev. Lett. 59, 1946 - 1950 (1987).
    • [4] D. S. Pearson and E. Helfand, Macromolecules 19, 888 (1984).
    • [5] R. C. Ball and T. C. B. McLeish, Macromolecules 22, 1911 - 1913 (1989).
    • [6] S. Milner and T. C. B. McLeish, Macromolecules 30, 2159 - 2166 (1997).
    • [7] R. G. Larson, Constitutive Equations for Polymer Melts and Solutions (Butterworths, Boston, 1988).
    • [8] A. Kaye, College of Aeronautics, Cranford, U.K., Note No. 134, 1962; B. Bernstein, E. A. Kearsley, and L. J. Zapas, Trans. Soc. Rheol. 7, 391 (1963).
    • [9] J. M. Meissner, J. Appl. Polym. Sci. 16, 2877 (1972).
    • [10] T. C. B. McLeish, Phys. World 8, 32 (1995).
    • [11] H. M. Laun and H. Schuch, J. Rheol. 33, 119 (1989).
    • [12] R. Ahmed, R. F. Liang, and M. R. Mackley, J. NonNewton. Fluid Mech. 59, 129 (1995).
    • [13] C. D. Han and L. H. Drexler, J. Appl. Polym. Sci. 17, 2329 (1973).
    • [14] D. K. Bick and T. C. B. McLeish, Phys. Rev. Lett. 76, 2587 (1996).
    • [15] J. Roovers, Macromolecules 17, 1196 (1984).
    • [16] T. C. B. McLeish, Macromolecules 21, 1062 - 1069 (1988).
    • [17] T. C. B. McLeish and R. G. Larson, J. Rheol. (to be published).
    • [18] M. E. Cates, J. Phys. Chem. 94, 371 (1990).
    • [19] H. M. Laun, in Proceedings of the Ninth International Congress on Rheology, Acapulco, Mexico, 1984 (UNAM, Mexico City, 1984), Vol. 3, p. 535.
    • [20] H. K. Rasmussen and O. Hassager, J. Non-Newton. Fluid Mech. 46, 63 - 99 (1993); X. F. Yuan, R. C. Ball, and S. F. Edwards, J. Non-Newton. Fluid Mech. 46, 331 - 350 (1993); O. Harlen, J. M. Rallison, and P. Szabo, J. NonNewton. Fluid Mech. 60, 81 - 104 (1995).
    • [21] P. Szabo, J. M. Rallison, and E. J. Hinch, J. Non-Newton. Fluid Mech. (to be published).
    • [22] R. A. Keiller, J. M. Rallison, and J. G. Evans, J. NonNewton. Fluid Mech. 42, 249 - 266 (1992).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article