LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Jiangling
Languages: English
Types: Doctoral thesis
Subjects:
Carbon is a versatile material which is composed of different allotropes, and also come in with different structures. Carbon nanofibres (CNFs) is one dimensional carbon nanomaterials, which have exhibited superior mechanical properties, great specific area, good electrical conductivity, good biocompatibility, and ease of modification. In addition to the lower cost associated to compare with carbon nanotubes (CNTs), CNFs have been attracted in numerous applications, such as reinforcement materials, filtrations, Li-ion battery, supercapacitor as well as tissue engineering, just to list a few. Therefore, it is a great deal to understand the relationship between the fabrication conditions and the characteristics of the resulted CNFs. In this project, electrospun PAN NFs were used as precursor material to fabricate carbon nanofibres. In order to produce CNFs with good morphology, the processing parameters of PAN nanofibres by electrospinning was optimized toward to the morphology at solution concentration of 12 wt%. The optimized processing parameters at given concentration were 16 kV, 14 cm and 1.5 mL/h, which led to the formation of PAN NFs with average fibre diameter of approximately 260 nm. Along with the effect of processing parameter study, the effect of concentration on the morphology was also carried out at optimized processing parameters. It was found that by increasing concentration of PAN solution from 2 to 16%, the resulted PAN transformed from beads only, to beaded fibres and finally to smooth fibres. With further increasing concentration the morphology of smooth fibres remain with increase in the fibre diameter. Electrospun PAN NFs with average fibre of 306 nm was selected to be converted into CNFs by using standard heating procedures, stabilisation in air at 280 °C and carbonization in N2. The effect of carbonization temperature ranging from 500 to 1000 °C was investigated, by using SEM, FTIR, Raman, and Impedance spectroscopy. With increasing carbonization temperature from 500 to 1000 °C, the diameter of NFs was decreased from 260 to 187, associated with loss of almost all functional groups of NFs. It was indicated by Raman results, that the graphitic crystallite size was increased from 2.62 to 5.24 nm, and the activation energy obtained for this growth was 7570 J/mol. Furthermore, impedance results (i.e. Cole-Cole plot) revealed that the electrical characteristic of CNFs transitioned from being insulating to electrically conducting in nature, suggested by the different electrical circuits extracted from Cole-Cole plots with carbonization temperature from 500 to 800 °C. The carbonization on PAN NFs with diameter of ~431nm was carried out by using novel route, microwave plasma enhance chemical vapour deposition (MPECVD) process. To compare with carbonized PAN NFs by using conventional route, MPECVD was not only able to facilitate carbonization process, but more interestingly can form carbon nanowalls (CNWs) grown on the surfaces of carbonized PAN NFs. Suggested by the unique morphology, the potential applications for the resulted carbon fibrous hybrid materials are supercapacitor electrode material, filtrations, and etc., The method developed in this project required one step less, compared with other literature. Therefore, using MPECVD on stabilised PAN NFs is proposed as economical, and straightforward approach towards mass production of carbon fibrous hybrid materials containing CNWs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. J. Li, S. Su, L. Zhou, A. Abbot, H. Ye, Dielectric transition of polyacrylonitrile derived carbon nanofibers, Mater. Res. Express., 1, 035604, 2014.
    • 2. J. Li, S. Su, L. Zhou, V. Kundrát, A. Abbot, F. Mushtaq, D. Ouyang, D. James, D. Roberts, H. Ye, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers, J. Appl. Phys., 113, 024313, 2013.
    • 3. S. Su, J. Li, V. Kundrát, A. Abbot, H. Ye, Hydrogen-passivated detonation nanodiamond: An impedance spectroscopy study, Diam. Relat. Mater., 24, 49-53, 2012.
    • 4. S. Su, J. Li, V. Kundrát, A. Abbot, H. Ye, Hydrogen-terminated Detonation Nanodiamond: Impedance Spectroscopy and Thermal Stability Studies, J. Appl. Phys., 113, 023707, 2013.
    • 5. G. Lee, S. Su, J. Li, K. Sugden, H. Ye, Analysis of femtosecond laser surface patterning on bulk single-crystalline diamond, J. Exp. NanoSci., 7, 662-672, 2012.
    • 6. S. Su, J. Li, G. Lee, K. Sugden, D. Webb, H. Ye, Femtosecond laser-induced microstructures on diamond for microfluidic sensing device applications, Appl. Phys. Lett., 102, 231913, 2013.
    • [2] H.R. Darrell, C. Iksoo, Nanotechnology, 7 (1996) 216.
    • [3] A. Frenot, I.S. Chronakis, Current Opinion in Colloid & Interface Science, 8 (2003) 64-75.
    • [4] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Composites Science and Technology, 63 (2003) 2223-2253.
    • [5] A. Greiner, J.H. Wendorff, Angewandte Chemie International Edition, 46 (2007) 5670-5703.
    • [6] S. Ramakrishna, An introduction to electrospinning and nanofibers, World Scientific Publishing Company Incorporated, 2005.
    • [7] S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, Z. Ma, Potential Applications, An Introduction to Electrospinning and Nanofibers, 2005, pp. 275-340.
    • [8] G. Taylor, Electrically Driven Jets, 1969.
    • [9] A.L. Yarin, S. Koombhongse, D.H. Reneker, Journal of Applied Physics, 90 (2001) 4836- 4846.
    • [10] L. Larrondo, R. St. John Manley, Journal of Polymer Science: Polymer Physics Edition, 19 (1981) 909-920.
    • [11] L. Larrondo, R. St. John Manley, Journal of Polymer Science: Polymer Physics Edition, 19 (1981) 921-932.
    • [12] L. Larrondo, R. St. John Manley, Journal of Polymer Science: Polymer Physics Edition, 19 (1981) 933-940.
    • [13] D. Li, Y. Xia, Advanced Materials, 16 (2004) 1151-1170.
    • [14] D.H. Reneker, A.L. Yarin, Polymer, 49 (2008) 2387-2425.
    • [15] K. Garg, G.L. Bowlin, Biomicrofluidics, 5 (2011) 013403.
    • [16] Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Polymer, 42 (2001) 09955-09967.
    • [18] H. Fong, I. Chun, D.H. Reneker, Polymer, 40 (1999) 4585-4592.
    • [19] C. Wang, Y.W. Cheng, C.H. Hsu, H.S. Chien, S.Y. Tsou, J Polym Res, 18 (2011) 111-123.
    • [20] N. Bhardwaj, S.C. Kundu, Biotechnology Advances, 28 (2010) 325-347.
    • [21] Q.P. Pham, U. Sharma, A.G. Mikos, Tissue engineering, 12 (2006) 1197-1211.
    • [22] V. Pillay, C. Dott, Y.E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L.C. du Toit, V.M.K. Ndesendo, Journal of Nanomaterials, 2013 (2013) 22.
    • [23] R. Jalili, S.A. Hosseini, M. Morshed, Iranian Polymer Journal, 14 (2005) 1074-1081.
    • [24] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer, 43 (2002) 3303-3309.
    • [25] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, Polymer, 44 (2003) 4029-4034.
    • [26] W. Liu, S. Adanur, Textile Research Journal, 80 (2010) 124-134.
    • [27] P.K. Baumgarten, Journal of Colloid and Interface Science, 36 (1971) 71-79.
    • [28] T. Subbiah, G. Bhat, R. Tock, S. Parameswaran, S. Ramkumar, Journal of Applied Polymer Science, 96 (2005) 557-569.
    • [29] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, Polymer, 42 (2001) 261-272.
    • [30] J. Fang, H. Wang, H. Niu, T. Lin, X. Wang, Journal of Applied Polymer Science, 118 (2010) 2553-2561.
    • [31] T. Wang, S. Kumar, Journal of Applied Polymer Science, 102 (2006) 1023-1029.
    • [32] K.D. Behler, A. Stravato, V. Mochalin, G. Korneva, G. Yushin, Y. Gogotsi, ACS Nano, 3 (2009) 363-369.
    • [33] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G.L. Yang, C. Li, P. Willis, Advanced Materials, 15 (2003) 1161-1165.
    • [34] C.S. Sharma, R. Vasita, D.K. Upadhyay, A. Sharma, D.S. Katti, R. Venkataraghavan, Industrial & Engineering Chemistry Research, 49 (2010) 2731-2739.
    • [35] J.H. He, Y.Q. Wan, J.Y. Yu, Fibers Polym, 9 (2008) 140-142.
    • [36] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J.H. Wendorff, Advanced Materials, 13 (2001) 70-72.
    • [37] C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Macromolecules, 37 (2003) 573-578.
    • [38] C. Wang, H.S. Chien, C.H. Hsu, Y.C. Wang, C.T. Wang, H.A. Lu, Macromolecules, 40 (2007) 7973-7983.
    • [39] N. Kizildag, Y. Beceren, M. Kazanci, D. Cukul.
    • [40] R. Khajavi, M. Abbasipour, Scientia Iranica, 19 (2012) 2029-2034.
    • [41] A. Saraf, G. Lozier, A. Haesslein, F.K. Kasper, R.M. Raphael, L.S. Baggett, A.G. Mikos, Tissue Engineering. Part C, Methods, 15 (2009) 333-344.
    • [42] H. Liu, Y.L. Hsieh, Journal of Polymer Science Part B: Polymer Physics, 40 (2002) 2119- 2129.
    • [43] W.E. Teo, S. Ramakrishna, Nanotechnology, 17 (2006) R89.
    • [44] H. Yuan, S. Zhao, H. Tu, B. Li, Q. Li, B. Feng, H. Peng, Y. Zhang, Journal of Materials Chemistry, 22 (2012) 19634-19638.
    • [45] A. Theron, E. Zussman, A.L. Yarin, Nanotechnology, 12 (2001) 384.
    • [46] D. Li, Y. Wang, Y. Xia, Nano Letters, 3 (2003) 1167-1171.
    • [47] D. Li, Y. Xia, Nano Letters, 4 (2004) 933-938. [49] H.O. Pierson, 8 - Carbon Fibers, in: H.O. Pierson (Ed.) Handbook of Carbon, Graphite, Diamonds and Fullerenes, William Andrew Publishing, Oxford, 1993, pp. 166-197.
    • [62] P. Rangarajan, V.A. Bhanu, D. Godshall, G.L. Wilkes, J.E. McGrath, D.G. Baird, Polymer, 43 (2002) 2699-2709.
    • [63] R.C. Houtz, Textile Research Journal, 20 (1950) 786-801.
    • [64] L.H. Peebles Jr, P. Peyser, A.W. Snow, W.C. Peters, Carbon, 28 (1990) 707-715.
    • [65] N. Grassie, R. McGuchan, European Polymer Journal, 7 (1971) 1357-1371.
    • [66] P. Goodhew, A. Clarke, J. Bailey, Materials Science and Engineering, 17 (1975) 3-30.
    • [67] R. Perret, W. Ruland, Journal of Applied Crystallography, 3 (1970) 525-532.
    • [68] M. Endo, Chemtech, 18 (1988) 568-576.
    • [69] Y. Kim, T. Hayashi, M. Endo, M. Dresselhaus, Carbon Nanofibers, in: R. Vajtai (Ed.) Springer Handbook of Nanomaterials, Springer Berlin Heidelberg, 2013, pp. 233-262.
    • [70] N.M. Rodriguez, M.-S. Kim, R.T.K. Baker, The journal of physical chemistry, 98 (1994) 13108-13111.
    • [71] J. Rafique, J. Yu, X. Zha, K. Rafique, Bull Mater Sci, 33 (2010) 553-559.
    • [72] M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M.S. Dresselhaus, Carbon, 39 (2001) 1287-1297.
    • [73] S.N. Arshad, M. Naraghi, I. Chasiotis, Carbon, 49 (2011) 1710-1719.
    • [74] Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, H. Fong, Polymer, 50 (2009) 2999-3006.
    • [75] E. Fitzer, W. Frohs, M. Heine, Carbon, 24 (1986) 387-395.
    • [76] A.D. Maop Panapy, Bussarin Ksapabutr, Thammasat Int. J.Sc.Tech., 13 (2008).
    • [78] T.-H. Ko, Journal of Applied Polymer Science, 42 (1991) 1949-1957.
    • [79] T.H. Ko, H.Y. Ting, C.H. Lin, Journal of Applied Polymer Science, 35 (1988) 631-640.
    • [80] D. Riggs, R. Shuford, R. Lewis, Graphite Fibers and Composites, in: G. Lubin (Ed.) Handbook of Composites, Springer US, 1982, pp. 196-271.
    • [81] N. Melanitis, P.L. Tetlow, C. Galiotis, J Mater Sci, 31 (1996) 851-860.
    • [82] J. Wang, M. Zhu, R.A. Outlaw, X. Zhao, D.M. Manos, B.C. Holloway, Carbon, 42 (2004) 2867-2872.
    • [83] S. Vizireanu, B. Mitu, C.R. Luculescu, L.C. Nistor, G. Dinescu, Surface and Coatings Technology, 211 (2012) 2-8.
    • [84] S. Vizireanu, L. Nistor, M. Haupt, V. Katzenmaier, C. Oehr, G. Dinescu, Plasma Processes and Polymers, 5 (2008) 263-268.
    • [85] D.S. Knight, W.B. White, Journal of Materials Research, 4 (1989) 385-393.
    • [86] Y. Wang, S. Serrano, J.J. Santiago-Avilés, Synthetic Metals, 138 (2003) 423-427.
    • [87] H. Niu, J. Zhang, Z. Xie, X. Wang, T. Lin, Carbon, 49 (2011) 2380-2388.
    • [92] H.C. Hsu, C.H. Wang, S.K. Nataraj, H.C. Huang, H.Y. Du, S.T. Chang, L.C. Chen, K.H. Chen, Diamond and Related Materials, 25 (2012) 176-179.
    • [93] J. Ting, M.L. Lake, Journal of Materials Research, 9 (1994) 636-642.
    • [94] M. Wu, Q. Wang, X. Liu, H. Liu, Carbon, 51 (2013) 335-345.
    • [95] S. Su, J. Li, V. Kundrát, A.M. Abbot, H. Ye, Diamond and Related Materials, 24 (2012) 49- 53.
    • [96] S. Shi, J. Li, K. Vojtěch, M.A. Andrew, Y. Haitao, Journal of Applied Physics, 113 (2013) 023707.
    • [97] H. Ye, P. Hing, International Journal of Thermophysics, 22 (2001) 1285-1294.
    • [98] Y.J. Wang, Y. Pan, X.W. Zhang, K. Tan, Journal of Applied Polymer Science, 98 (2005) 1344-1350.
    • [99] http://sekidiamond.com/pdf/AX5010-INT_Brochure_R1.pdf [100] P.J. Goodhew, J. Humphreys, R. Beanland, Electron microscopy and analysis, Third ed., Taylor & Francis, 2001.
    • [101] K.L. Elias, R.L. Price, T.J. Webster, Biomaterials, 23 (2002) 3279-3287.
    • [102] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, European Polymer Journal, 41 (2005) 423- 432.
    • [103] Y. Wang, J. Liu, J. Y. Liang, Advanced Materials Research, 11-12 (2006) 73-76.
    • [104] J. Li, S. Su, L. Zhou, V. Kundrat, A.M. Abbot, F. Mushtaq, D. Ouyang, D. James, D. Roberts, H. Ye, Journal of Applied Physics, 113 (2013) 024313.
    • [105] H. Kakida, K. Tashiro, Polymer Journal, 29 (1997) 557-562.
    • [106] W.X. Zhang, Y.Z. Wang, C.F. Sun, J Polym Res, 14 (2007) 467-474.
    • [107] S. Su, J. Li, V. Kundrat, A.M. Abbot, H. Ye, J. Appl. Phys., 113 (2013) 023707-023708.
    • [108] H. Ye, C. Sun, H. Huang, P. Hing, Appl. Phys. Lett., 78 (2001) 1826-1828.
    • [109] N. Hedin, V. Sobolev, L. Zhang, Z. Zhu, H. Fong, J Mater Sci, 46 (2011) 6453-6456.
    • [110] R.J. Diefendorf, E. Tokarsky, Polymer Engineering & Science, 15 (1975) 150-159.
    • [111] Y. Wang, J.J.S. Aviles, R. Furlan, I. Ramos, IEEE Trans. Nanotechnol., 2 (2003) 39-43.
    • [112] J. Li, S. Shi, Z. Lei, M.A. Andrew, Y. Haitao, Materials Research Express, 1 (2014) 035604.
    • [113] M.S.A. Rahaman, A.F. Ismail, A. Mustafa, Polym. Degrad. Stabil., 92 (2007) 1421.
    • [114] W. Zhang, Y. Wang, C. Sun, J. Polym. Res., 14 (2007) 467.
    • [115] W.J. Burlant, J.L. Parsons, Journal of Polymer Science, 22 (1956) 249-256.
    • [116] L. Giorgi, T.D. Makris, R. Giorgi, N. Lisi, E. Salernitano, Sensors and Actuators B: Chemical, 126 (2007) 144-152.
    • [117] A. Malesevic, S. Vizireanu, R. Kemps, A. Vanhulsel, C.V. Haesendonck, G. Dinescu, Carbon, 45 (2007) 2932-2937.
    • [118] Y. Wu, P. Qiao, T. Chong, Z. Shen, Advanced Materials, 14 (2002) 64-67.
    • [119] M. Hiramatsu, K. Shiji, H. Amano, M. Hori, Applied Physics Letters, 84 (2004) 4708-4710.
    • [120] M. Zhu, J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, D.M. Manos, Carbon, 45 (2007) 2229-2234.
    • [121] J.J. Wang, M.Y. Zhu, R.A. Outlaw, X. Zhao, D.M. Manos, B.C. Holloway, V.P. Mammana, Appl. Phys. Lett., 85 (2004) 1265.
    • [122] S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina Morales, H. Nakai, Journal of Applied Physics, 97 (2005).
    • [123] S. Dalton, F. Heatley, P.M. Budd, Polymer, 40 (1999) 5531.
    • [124] J. Rafique, J. Yu, X. Zha, K. Rafique, Bull. Mater. Sci., 33 (2010) 553.
    • [125] Y. Wang, J. Liu, J.Y. Liang, Adv. Mater. Res., 11-12 (2006) 73.
    • [126] H. Kakida, K. Tashiro, Polym. J., 29 (1997) 557.
    • [127] J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, P. Supaphol, Polymer International, 55 (2006) 825-833.
    • [128] M. Panapoy, A. Dankeaw, B. Ksapabutr, Thammasat Int. J. Sc. Tech., 13 (2008) 11.
    • [129] C. Kim, S.H. Park, J.I. Cho, D.Y. Lee, T.J. Park, W.J. Lee, K.S. Yang, J. Raman. Spectrosc., 35 (2004) 928.
    • [130] G. Zou, D. Zhang, C. Dong, H. Li, K. Xiong, L. Fei, Y. Qian, Carbon, 44 (2006) 828-832.
    • [131] J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, H. Zandbergen, Chemical Physics Letters, 221 (1994) 53-58.
    • [132] J.S. Ye, X. Liu, H.F. Cui, W.D. Zhang, F.S. Sheu, T.M. Lim, Electrochemistry Communications, 7 (2005) 249-255.
    • [133] E. Frackowiak, F. Béguin, Carbon, 39 (2001) 937-950.
    • [134] E.C. Almeida, M.R. Baldan, J.M. Rosolen, N.G. Ferreira, Diamond and Related Materials, 17 (2008) 1529-1533.
    • [135] E.J. Ra, E. Raymundo Piñero, Y.H. Lee, F. Béguin, Carbon, 47 (2009) 2984-2992.
    • [136] G.C.B. Lee, S. Su, J. Li, K. Sugden, N. Roohpour, H. Yan, H. Ye, Journal of Experimental Nanoscience, 7 (2012) 662-672.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    50
    50%
  • No similar publications.

Share - Bookmark

Cite this article