Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Morris, TJ; Picken, A; Sharp, DMC; Slater, Nigel Kenneth; Hewitt, CJ; Coopman, K (2016)
Publisher: Cryobiology
Languages: English
Types: Article
Subjects: Agricultural and Biological Sciences(all), toxicity, Biochemistry, Genetics and Molecular Biology(all), bioprocessing, human mesenchymal stem cells, dimethylsulfoxide, HOS TE85, Medicine(all), cryopreservation
With the cell therapy industry continuing to grow, the ability to preserve clinical grade cells, including mesenchymal stem cells (MSCs), whilst retaining cell viability and function remains critical for the generation of off-the-shelf therapies. Cryopreservation of MSCs, using slow freezing, is an established process at lab scale. However, the cytotoxicity of cryoprotectants, like Me$_{2}$SO, raises questions about the impact of prolonged cell exposure to cryoprotectant at temperatures >0 °C during processing of large cell batches for allogenic therapies prior to rapid cooling in a controlled rate freezer or in the clinic prior to administration. Here we show that exposure of human bone marrow derived MSCs to Me$_{2}$SO for ≥1 h before freezing, or after thawing, degrades membrane integrity, short-term cell attachment efficiency and alters cell immunophenotype. After 2 h's exposure to Me$_{2}$SO at 37 °C post-thaw, membrane integrity dropped to ∼70% and only ∼50% of cells retained the ability to adhere to tissue culture plastic. Furthermore, only 70% of the recovered MSCs retained an immunophenotype consistent with the ISCT minimal criteria after exposure. We also saw a similar loss of membrane integrity and attachment efficiency after exposing osteoblast (HOS TE85) cells to Me$_{2}$SO before, and after, cryopreservation. Overall, these results show that freezing medium exposure is a critical determinant of product quality as process scale increases. Defining and reporting cell sensitivity to freezing medium exposure, both before and after cryopreservation, enables a fair judgement of how scalable a particular cryopreservation process can be, and consequently whether the therapy has commercial feasibility. The authors would like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC; UK, EP/F500491/1) and Bioprocessing Research Industry Club (BBSRC/BRIC; UK, BB/I017602/1) for their support and funding.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Aye, C. Di Giorgio, M. De Mo, A. Botta, J. Perrin, C. Courbiere, Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol, Food Chem. Toxicol. 48 (2010) 1905e1912.
    • [2] Biocision, Coolcell lx. Available at http://biocision.com/products/CoolCell-LXFreezing-Container/. Accessed: 2014-08-13.
    • [3] A.J. Caplan, D. Correa, The MSC: an injury drugstore, Cell Stem Cell 9 (2011) 11e15.
    • [4] J. Carmen, S.R. Burger, M. McCaman, J.A. Rowley, Developing assays to address identity, potency, purity and safety: cell characterization in cell therapy process development, Regen. Med. 7 (2012) 85e100.
    • [5] A.K. Chan, T.R. Heathman, K. Coopman, C.J. Hewitt, Multiparameter flow cytometry for the characterisation of extracellular markers on human mesenchymal stem cells, Biotechnol. Lett. 36 (2014) 731e741.
    • [6] M.A. Cox, J. Kastrup, M. Hrubisko, Historical perspectives and the future of adverse reactions associated with haemopoietic stem cells cryopreserved with dimethyl sulfoxide, Cell Tissue Bank. 13 (2012) 203e215.
    • [7] F. Deng, H. Lei, Y. Hu, L. He, H. Fu, R. Feng, P. Feng, W. Huang, X. Wang, J. Chang, Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells, Cell Tissue Bank. 17 (2016) 147e159.
    • [8] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy 8 (2006) 315e317.
    • [9] G.M. Fahy, Cryoprotectant toxicity neutralization, Cryobiology 60 (2010) S45eS53.
    • [10] M. François, I.B. Copland, S. Yuan, R. Romieu-Mourez, E.K. Waller, Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-g licensing, Cytotherapy 12 (2012) 147e152.
    • [11] M.W. Glacken, Catabolic control of mammalian cell culture, Nat. Biotechnol. 6 (1988) 1041e1988.
    • [12] E.E. Golub, K. Boesze-Battaglia, The role of alkaline phosphatase in mineralization, Curr. Opin. Orthop. 18 (2007) 444e448.
    • [13] J.M. Hare, J.H. Traverse, T.D. Henry, N. Dib, R.K. Strumpf, S.P. Schulman, G. Gerstenblith, A.N. DeMaria, A.E. Denktas, R.S. Gammon, J.B. Hermiller, M.A. Reisman, G.L. Schaer, W. Sherman, A randomized, double-blind, placebocontrolled, dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after actute myocardial infarction, J. Am. Coll. Cardiol. 54 (2009) 2277e2286.
    • [14] Health Canada Summary basis of decision (sbd) for prochymal, Available at, http://www.hc-sc.gc.ca/dhp-mps/prodpharma/sbd-smd/drug-med/sbd_smd_ 2012_prochymal_150026-eng.php, 2012. Accessed: 26.08.14.
    • [15] R. Heidemann, S. Lunse, D. Tran, C. Zhang, Characterization of cell-banking parameters for the cryopreservation of mammalian cell lines in 100-mL cryobags, Biotechnol. Prog. 26 (2010) 1154e1163.
    • [16] C.J. Hunt, S.E. Armitage, P.E. Pegg, Cryopreservation of umbilical cord blood: 2. Tolerance of CD34þ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing, Cryobiology 46 (2003) 76e87.
    • [17] L. Jackson, D.R. Jones, P. Scotting, V. Sottile, Adult mesenchymal stem cells: differentiation potential and therapeutic applications, J. Postgrad. Med. 53 (2007) 121e127.
    • [18] I.I. Katkov, M.S. Kim, R. Bajpai, Y.S. Altman, M. Mercola, J.F. Loring, A.V. Terskikh, E.Y. Snyder, F. Levine, Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells, Cryobiology 53 (2006) 194e205.
    • [19] D.P. Kavanagh, S. Suresh, P.N. Newsome, J. Frampton, N. Kalia, Pretreatment of mesenchymal stem cells manipulates their vasculoprotective potential while not altering their homing within the injured gut, Stem Cells 33 (2015) 2785e2797.
    • [20] F. Lang, G.L. Busch, M. Ritter, H. Vo€lkl, S. Waldegger, E. Gulbins, D. Ha€ussinger, Functional significance of cell volume regulatory mechanisms, Physiol. Rev. 78 (1998) 247e306.
    • [21] J.E. Lovelock, The Denaturation of lipid-protein complexes as a cause of damage by freezing, Proc.R. Soc. B 147 (1957) 427e433.
    • [22] L.J. McIntyre, Y.S. Kim, Effects of sodium butyrate and dimethylsulfoxide on human pancreatic tumor cell lines, Eur. J. Cancer Clin. Oncol. 20 (1984) 265e271.
    • [23] M. Mendicino, A.M. Bailey, K. Wonnacott, R.K. Puri, S.R. Bauer, MSC-based product characterization for clinical trials: an FDA perspective, Cell Stem Cell 14 (2014) 141e145.
    • [24] P.D. Mitchell, E. Ratcliffe, P. Hourd, D.J. Williams, R.J. Thomas, A Quality by Design approach to risk reduction & optimisation for human embryonic stem cell cryopreservation processes, Tissue Eng. Part C 20 (2014) 941e950.
    • [25] G. Moll, J.J. Alm, L.C. Davies, L. von Bahr, N. Heldring, L. Stenbeck-Funke, O.A. Hamad, R. Hinsch, L. Ignatowicz, M. Locke, H. Lonnies, J.D. Lambris, Y. Teramura, K. Nilsson-Ekdahl, B. Nilsson, K. Le Blanc, Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem cells 32 (2014) 2430e2442.
    • [26] J.E. Murphy-Ullrich, The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J. Clin. Investig. 107 (2001) 785e790.
    • [27] R. Pal, M.K. Mamidi, A.K. Das, R. Bhonde, Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells, ArchToxicol. 86 (2012) 651e661.
    • [28] M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science 284 (1999) 143e147.
    • [29] Q.A. Rafiq, K.M. Brosnan, K. Coopman, A.W. Nienow, C.J. Hewitt, Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor, Biotechnol. Lett. 35 (2013) 1233e1245.
    • [30] C. Rodríguez-Burford, D.K. Oelschlager, L.I. Talley, M.N. Barnes, E.E. Partridge, W.E. Grizzle, The use of dimethylsulfoxide as a vehicle in cell culture experiments using ovarian carcinoma cell lines, Biotech. Histochem. 78 (2003) 17e21.
    • [31] J. Rowley, E. Abraham, A. Campbell, H. Brandwein, S. Oh, Meeting lot-size challenges of manufacturing adherent cells for therapy, BioProcess Int. 10 (2012) 16e22.
    • [32] D. Shah, M. Naciri, P. Clee, M. Al-Rubeai, NucleoCounterdAn efficient technique for the determination of cell number and viability in animal cell culture processes, Cytotechnology 51 (2006) 39e44.
    • [33] D.M. Sharp, A. Picken, T.J. Morris, C.J. Hewitt, K. Coopman, N.K. Slater, Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxidefree human cell cryopreservation, Cryobiology 67 (2013) 305e311.
    • [34] Z. Shu, S. Heimfeld, D. Gao, Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion, Bone Marrow Transpl. 49 (2014) 469e476.
    • [35] R.C. Taylor, S.P. Cullen, S.J. Martin, Apoptosis: controlled demolition at the cellular level, Nat. Rev. Mol. Cell Biol. 9 (2008) 231e241.
    • [36] H. Teraoka, M. Mikoshiba, K. Takase, K. Yamamoto, K. Tsukada, Reversible G1 arrest induced by dimethyl sulfoxide in human lymphoid cell lines: dimethyl sulfoxide inhibits IL-6-induced differentiation of SKW6-CL4 into IgMsecreting plasma cells, Exp. Cell Res. 222 (1996) 218e224.
    • [37] U.S. Food and Drug Administration, Guidance for Industry: Guidance for Human Somatic Cell Therapy and Gene Therapy, Last updated March 1998. Available at, http://www.fda.gov/. Accessed: 25.07.16.
    • [38] U.S. Food and Drug Administration, Guidance for FDA Reviewers and Sponsors, Content and Review of Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs), Last updated April 2008. Available at, http://www.fda.gov/. Accessed: 26.08.14.
    • [39] United States NIH Search of: Human Mesenchymal Stem Cell - List Results - clinicaltrials.Gov. https://clinicaltrials.gov/ct2/results? term¼humanþmesenchymalþstemþcell&Search¼Search. Accessed: 14.02.15 Search Term: human mesenchymal stem cell.
    • [40] R.G. van Buskirk, K.K. Snyder, J.G. Baust, A.J. Mathew, J.M. Baust, Cryopreservation: it's not just about cell yield, BioProcess Int. 3 (2005) 64e72.
    • [41] A. Wanet, T. Arnould, M. Najimi, P. Renard, Connecting mitochondria, metabolism, and stem cell fate, Stem Cells Dev. 24 (2015) 1957e1971.
    • [42] X. Xu, Z. Cui, J.P. Urban, Measurement of the chondrocyte membrane permeability to Me2SO, glycerol and 1,2-propanediol, Med. Eng. Phys. 25 (2003) 573e579.
    • [43] Z.W. Yu, P.J. Quinn, Dimethyl sulphoxide: a review of its applications in cell biology, Biosci. Rep. 14 (1994) 259e281.
    • [44] T. Zampolla, E. Spikings, T. Zhang, D.M. Rawson, Effect of methanol and Me2SO exposure on mitochondrial activity and distribution in stage III ovarian follicles of zebrafish (Danio rerio), Cryobiology 59 (2009) 188e194.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article