LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Driver, Ian D.; Hall, Emma L.; Wharton, Samuel J.; Pritchard, Susan E.; Francis, Susan T.; Gowland, Penny A. (2012)
Publisher: Elsevier
Journal: NeuroImage
Languages: English
Types: Article
Subjects: Hyperoxia, BOLD calibration, Cognitive Neuroscience, CMRO2, Article, fMRI, Blood oxygenation, Neurology

Classified by OpenAIRE into

mesheuropmc: circulatory and respiratory physiology, sense organs
Calibration of the BOLD signal is potentially of great value in providing a closer measure of the underlying changes in brain function related to neuronal activity than the BOLD signal alone, but current approaches rely on an assumed relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF). This is poorly characterised in humans and does not reflect the predominantly venous nature of BOLD contrast, whilst this relationship may vary across brain regions and depend on the structure of the local vascular bed. This work demonstrates a new approach to BOLD calibration which does not require an assumption about the relationship between cerebral blood volume and cerebral blood flow. This method involves repeating the same stimulus both at normoxia and hyperoxia, using hyperoxic BOLD contrast to estimate the relative changes in venous blood oxygenation and venous CBV. To do this the effect of hyperoxia on venous blood oxygenation has to be calculated, which requires an estimate of basal oxygen extraction fraction, and this can be estimated from the phase as an alternative to using a literature estimate. Additional measurement of the relative change in CBF, combined with the blood oxygenation change can be used to calculate the relative change in CMRO2 due to the stimulus. CMRO2 changes of 18 ± 8% in response to a motor task were measured without requiring the assumption of a CBV/CBF coupling relationship, and are in agreement with previous approaches.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ayres, S.M., Criscitiello, A., Grabovsk, E., 1964. Components of alveolar-arterial O2 difference in normal man. J. Appl. Physiol. 19 (1), 43-47.
    • Banzett, R.B., Garcia, R.T., Moosavi, S.H., 2000. Simple contrivance “clamps” end-tidal Pco(2) and Po-2 despite rapid changes in ventilation. J. Appl. Physiol. 88 (5), 1597-1600.
    • Blockley, N.P., Jiang, L., Gardener, A.G., Ludman, C.N., Francis, S.T., Gowland, P.A., 2008. Field strength dependence of R(1) and R(2)* relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin. Magn. Reson. Med. 60 (6), 1313-1320.
    • Blockley, N.P., Driver, I.D., Francis, S.T., Fisher, J.A., Gowland, P.A., 2009. Susceptibility Artefacts in Experiments Involving Changes in Inspired Oxygen Level: Proc. Intl. Soc. Mag. Reson. Med., Honolulu, Hawaii, USA., 17, p. 1618.
    • Blockley, N.P., Driver, I.D., Fisher, J.A., Francis, S.T., Gowland, P.A., 2012. Measuring venous blood volume changes during activation using hyperoxia. Neuroimage 59 (4), 3266-3274.
    • Boxerman, J.L., Hamberg, L.M., Rosen, B.R., Weisskoff, R.M., 1995. MR contrast due to intravascular magnetic-susceptibility perturbations. Magn. Reson. Med. 34 (4), 555-566.
    • Boynton, G.M., Engel, S.A., Glover, G.H., Heeger, D.J., 1996. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16 (13), 4207-4221.
    • Brogan, T.V., Robertson, H.T., Lamm, W.J.E., Souders, J.E., Swenson, E.R., 2004. Carbon dioxide added late in inspiration reduces ventilation-perfusion heterogeneity without causing respiratory acidosis. J. Appl. Physiol. 96 (5), 1894-1898.
    • Bulte, D., Chiarelli, P., Wise, R., Jezzard, P., 2007a. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J. Magn. Reson. Imaging 26 (4), 894-899.
    • Kim, T., Hendrich, K.S., Masamoto, K., Kim, S.G., 2007. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J. Cereb. Blood Flow Metab. 27 (6), 1235-1247.
    • Kolbitsch, C., Lorenz, I.H., Hormann, C., Hinteregger, M., Lockinger, A., Moser, P.L., Kremser, C., Schocke, M., Felber, S., Pfeiffer, K.P., Benzer, A., 2002. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers. Magn. Reson. Imaging 20 (7), 535-541.
    • Lee, S.P., Duong, T.Q., Yang, G., Iadecola, C., Kim, S.G., 2001. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn. Reson. Med. 45 (5), 791-800.
    • Leontiev, O., Dubowitz, D.J., Buxton, R.B., 2007. CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias. Neuroimage 36 (4), 1110-1122.
    • Lu, H.Z., Ge, Y.L., 2008. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn. Reson. Med. 60 (2), 357-363.
    • Mark, C.I., Fisher, J.A., Pike, G.B., 2011. Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli. Neuroimage 54 (2), 1102-1111.
    • Noth, U., Meadows, G.E., Kotajima, F., Deichmann, R., Corfield, D.R., Turner, R., 2006. Cerebral vascular response to hypercapnia: determination with perfusion MRI at 1.5 and 3.0 tesla using a pulsed arterial spin labeling technique. J. Magn. Reson. Imaging 24 (6), 1229-1235.
    • Ogawa, S., Menon, R.S., Tank, D.W., Kim, S.G., Merkle, H., Ellermann, J.M., Ugurbil, K., 1993. Functional brain mapping by blood oxygenation level-dependent contrast magnetic-resonance-imaging - a comparison of signal characteristics with a biophysical model. Biophys. J. 64 (3), 803-812.
    • Pilkinton, D.T., Gaddam, S.R., Reddy, R., 2011. Characterization of paramagnetic effects of molecular oxygen on blood oxygenation level-dependent-modulated hyperoxic contrast studies of the human brain. Magn. Reson. Med. 66 (3), 794-801.
    • Rostrup, E., Larsson, H.B.W., Toft, P.B., Garde, K., Henriksen, O., 1995. Signal changes in gradient-echo images of human brain induced by hypoxia and hyperoxia. NMR Biomed. 8 (1), 41-47.
    • Rothman, D.L., Sibson, N.R., Hyder, F., Shen, J., Behar, K.L., Shulman, R.G., 1999. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 354 (1387), 1165-1177.
    • Severinghaus, J.W., 1979. Simple, accurate equations for human-blood O2 dissociation computations. J. Appl. Physiol. 46 (3), 599-602.
    • Shmuel, A., Yacoub, E., Chaimow, D., Logothetis, N.K., Ugurbil, K., 2007. Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 tesla. Neuroimage 35 (2), 539-552.
    • Slessarev, M., Han, J., Mardimae, A., Prisman, E., Preiss, D., Volgyesi, G., Ansel, C., Duffin, J., Fisher, J.A., 2007. Prospective targeting and control of end-tidal CO2 and O-2 concentrations. J. Physiol. Lond. 581 (3), 1207-1219.
    • Spees, W.M., Yablonskiy, D.A., Oswood, M.C., Ackerman, J.J.H., 2001. Water proton MR properties of human blood at 1.5 tesla: magnetic susceptibility, T-1, T-2, T-2* and non-Lorentzian signal behavior. Magn. Reson. Med. 45 (4), 533-542.
    • Stefanovic, B., Warnking, J.M., Pike, G.B., 2004. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22 (2), 771-778.
    • Stefanovic, B., Warnking, J.M., Kobayashi, E., Bagshaw, A.P., Hawco, C., Dubeau, F., Gotman, J., Pike, G.B., 2005. Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage 28 (1), 205-215.
    • Stefanovic, B., Warnking, J.M., Rylander, K.M., Pike, G.B., 2006. The effect of global cerebral vasodilation on focal activation hemodynamics. Neuroimage 30 (3), 726-734.
    • Swenson, E.R., Robertson, H.T., Hlastala, M.P., 1994. Effects of inspired carbon-dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Am. J. Respir. Crit. Care Med. 149 (6), 1563-1569.
    • Turner, R., 2002. How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16 (4), 1062-1067.
    • Watson, N.A., Beards, S.C., Altaf, N., Kassner, A., Jackson, A., 2000. The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography. Eur. J. Anaesthesiol. 17 (3), 152-159.
    • Yablonskiy, D.A., Haacke, E.M., 1994. Theory of NMR signal behaviour in magnetically inhomogeneous tissues - the static dephasing regime. Magn. Reson. Med. 32 (6), 749-763.
    • Zaharchuk, G., Martin, A.J., Dillon, W.P., 2008. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. Am. J. Neuroradiol. 29 (4), 663-667.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article