LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Borri, Antonio; Corradi, Marco; Speranzini, Emanuela (2013)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: H200, J500
This paper describes an experimental programme which examines the reinforcement in flexure of timber beams with composite materials based on natural fibers in the form of fabrics made from hemp, flax, basalt and bamboo fibers. The industrial use of natural fibers has been continuously increasing since 1990s due to their advantages in terms of production costs, pollution emissions and energy consumption for production and disposal. The technique allows the reinforcement of the intrados of beams, avoiding the dismantling of the overlying part of the structure with significant savings in terms of costs and work time. The test program consists of three phases incorporating 45 beams. The bending tests on the wooden elements made it possible to measure the increase in capacity and stiffness resulting from the composite reinforcement. This was applied to beams, creating different arrangements and using different quantities (number of layers). Despite the diversity of the various tests carried out, the results obtained in some cases showed significant increases in terms of load-carrying capacity and in deflection ductility.

Share - Bookmark

Cite this article